SYDNEY GRAMMAR SCHOOL

2006 FORM VI TRIAL HSC EXAMINATION

Chemistry

General Instructions

- Reading time 5 minutes.
- Working time 3 hours
- Board-approved calculators may be used
- Write using blue or black pen
- Draw diagrams using pencil
- A Data Sheet and Periodic Table are provided at the back of this paper
- Write your candidate number and class at the top of each page in Part B and on the answer booklet

CHECKLIST

Each boy should have the following :

1 Question Paper

1 Multiple Choice Answer Sheet

18 - Page Booklet

Chemistry Classes.

1 JAG	2 JME	3 AKBB
4 MMB	5 AKBB	6 JAG

Section I Pages 2 - 24

Total marks (100)

This section has two parts, Part A and Part B

Part A

Total marks (15)

- Attempt Questions 1-15
- Allow about 25 minutes for this Section

Part B

Total marks (69)

- Attempt Questions 16-29
- Allow about 2 hours for this Section

Section II Total marks (16)

- Attempt Question 30 in this section.
- Allow about 35 minutes for this Section

Pages 25-28

Part A Total marks (15) Attempt Questions 1-15 Allow about 25 minutes for this Part

Use the multiple-choice Answer Sheet.

Select the alternative A, B, C or D that best answers the question. Fill the response circle completely.

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.

If you change your mind and have crossed out what you consider to be the correct answer, then indicate this by writing the word *correct* and drawing an arrow as follows.

- 1 What is a free radical?
 - (A) An atom or molecule with an unpaired electron.
 - (B) A particle that is free to move in a chemical reaction.
 - (C) A charged particle that is free to move.
 - (D) An organo-halogen compound.
- 2 Which of the following is the catalyst used in the Haber process?
 - (A) iron-iron oxide
 - (B) zeolite
 - (C) conc H_2SO_4
 - $(D) \qquad V_2O_5$
- **3** Which of the following substances could not be produced by ethene undergoing an addition reaction?

- 4 Which of the following statements best describes condensation polymerisation?
 - (A) The reaction between many units, whereby the units link to each other across their double bonds to form a chain.
 - (B) The reaction between many units, whereby the functional groups of the units react in such a way as to form a chain and expel water molecules.
 - (C) The reaction between many units, whereby the amine group of one molecule reacts with the carboxyl group of the next to form a chain and expel water.
 - (D) The reaction between many units, whereby the units link to each other to form a chain and to expel many small molecules.

- 5 Which of the following represents the ideal conditions for fermentation to occur?
 - (A) Air is excluded; zymase(yeast) is added; $\approx 35^{\circ}$ C.
 - (B) Conc. H₂SO₄ is added; zymase(yeast) is present; $\approx 35^{\circ}$ C.
 - (C) Mixture is oxygenated; zymase(yeast) is added; $\approx 25^{\circ}$ C.
 - (D) Low O₂ environment; zymase(yeast) is added; mixture is refluxed.
- 6 The first four steps in the decay series for Uranium 238 can be represented as follows:

$$\overset{238}{_{92}}U \xrightarrow[]{_{Step 1}} \overset{234}{_{90}}Th \xrightarrow[]{_{Step 2}} \overset{234}{_{91}}Pa \xrightarrow[]{_{Step 3}} \overset{234}{_{92}}U \xrightarrow[]{_{Step 4}} \overset{230}{_{90}}Th$$

The types of radiation which accompany each of steps 1 to 4, are respectively-

- (A) β , α , α , β
- (B) $\alpha, \beta, \gamma, \delta$
- (C) $\alpha, \beta, \beta, \alpha$
- (D) $\beta, \gamma, \gamma, \beta$

7 Which of the compounds below are isomers?

(I) CI + F CI - C - C - F CI + F F - C - F CI + FCI + F

(III) 1,1,1-trichloro-2,2,2-trifluoroethane

(IV) 3,3,3-trichloro-1,1,1-trifluoropropane

(A)	(I) and (IV)
(B)	(II) and (III)

- (C) (I) and (II)
- (D) (III) and (IV)

- 8 A lawn food containing 56.6% ammonium sulfate (FW = 132) was analysed by precipitating the sulfate as barium sulfate (FW = 233). What is the mass of dry barium sulfate expected from 1.00g of the lawn food?
 - (A) 0.566g
 - (B) 1.00g
 - (C) 1.77g
 - (D) 2.00g
- 9 What is the change in pH when 10mL of 0.1M HCl_(aq) is diluted with 990mL of deionised water?
 - (A) increase by 2
 - (B) decrease by 2
 - (C) increase by 3
 - (D) decrease by 3
- 10 How is a Bronsted-Lowry acid best described?
 - (A) A substance which forms H^+ ions in water
 - (B) A substance which contains oxygen
 - (C) A substance which is a proton donor
 - (D) A substance which contains hydrogen
- 11 What is the name of the ester below?

- (A) ethyl octanoate
- (B) octyl ethanoate
- (C) methyl octanoate
- (D) heptyl ethanoate
- 12

Which of the salts below produces a basic solution when dissolved in water?

- (A) NH₄Cl
- (B) KNO₃
- $(C) \qquad KCH_3CH_2COO$
- (D) FeCl₃

13 A galvanic cell is set up using magnesium and copper half-cells. The equation for the reaction in the cell is:

$$Mg_{(s)} + Cu^{2+}_{(aq)} \rightarrow Mg^{2+}_{(aq)} + Cu_{(s)}$$

Which of the following statements applies when the galvanic cell is producing electricity?

- (A) The mass of the copper electrode decreases.
- (B) Electrons flow from the copper half-cell to the magnesium half-cell.
- (C) Electrons are lost from magnesium atoms.
- (D) Anions flow through the salt bridge from the magnesium half-cell to the copper half-cell.
- 14 Which of the following solutions contains the greatest number of moles of solute?
 - (A) 10.0mL of 0.50M HCl_(aq)
 - (B) 20.0mL of 0.40M HCl_(aq)
 - (C) 30.0mL of 0.30M HCl_(aq)
 - (D) 40.0mL of 0.20M HCl_(aq)
- 15 Which of the following statements best describes how a catalyst operates in a reversible reaction?
 - (A) The catalyst increases the enthalpy change of the reverse reaction.
 - (B) The catalyst decreases the enthalpy change of the forward reaction.
 - (C) The catalyst decreases the activation energy of both the forward and backward reactions.
 - (D) The catalyst increases the activation energy of the reverse reaction.

_	_				
P: Te At Al	art B otal marks (69) ttempt ALL Questions llow about 2 hours for this Part	Class	·	Candidate Nu	mber
Ai Sh	nswer the questions in the spaces p now all relevant working in question	provided ons involving calcul	ations		
Ouest	an 16 (6 moulto)				Marks
Questi	on to (o marks)				
At the disting	start of the HSC course you perfor uish between alkanes and alkenes.	med an experiment	that a	llowed you to	
(a)	Identify an alkane and an alkene other reagents used.	which you used in	this ex	xperiment plus any	2
(b)	Identify the hazards involved in	this experiment.			2
			• • • • • • •		
			•••••		
			•••••		
(c)	Write an equation for any reaction	on which occurred.			2

Class

Candidate Number

Question 17 (3 marks)

Distinguish between stable and radioactive isotopes and identify the conditions under which a nucleus is unstable.

3

• • • • •
 • • • • •

Question 18 (2 marks)

Complete the following table, which refers to a number of titrations carried out in a school laboratory using solutions in the range 0.1-0.5M.

2

Titrant	Other reactant	Appropriate indicator
HCl	NaOH	
CH ₃ COOH	LiOH	
NH ₃	HNO ₃	

2006 Trial Examination

Class

Candidate Number

Marks

Question 19 (4 marks)

- (a) Draw a labelled diagram of an operating galvanic cell that is made up of two half cells, each containing a metal in contact with its ions. Label the cathode, the anode, and the salt bridge.
- 3

1

(b) Calculate the voltage of this cell under standard conditions.

.....

Form VI Chemistry 2006 Trial Examination Class Candidate Number **BLANK PAGE**

2006 Trial Examination

Class

Candidate Number

	Marks
Question 20 (3 marks)	
Explain why the Haber process is based on a delicate balancing act involving reaction energy, reaction rate and equilibrium.	3
Question 21 (3 marks)	
Compare one physical and one chemical property of the oxygen allotropes O_2 and O_3 and account for the differences on the basis of structure and bonding.	3

2006 Trial Examination

Class

Candidate Number

Question 22 (4 marks)

Marks

Consider the data on the greenhouse gases presented in the graph below.

The greenhouse gas and deuterium (δD) records for the past 650,000 years from ice cores. δD , the deviation of the deuterium/hydrogen ratio from an isotope standard, is a proxy for air temperature; more positive values indicate warmer conditions.

	Form	VI	Chemistry
--	------	----	-----------

2006 Trial Examination

Class

Candidate Number

Marks

4

Question 23 (4 marks)

Discuss the use of neutralisation in dealing with an acid spill in a laboratory.

F	Form VI Chemistry	2006 Trial Examination
	Class	Candidate Number
Quest	ion 24 (4 marks)	Marks
One ad	cidic oxide found in the atmosphere is $SO_{2(g)}$.	
(a)	Name one natural and one industrial source of $SO_{2(g)}$.	1
	·····	
(b)	Write an equation to demonstrate the acidic nature of S	SO _{2(g)} . 1
(c)	At 25°C and 100kPa, what volume of SO _{2(g)} would be 500mL of 1.05M sulfurous acid?	needed to produce 2

2006 Trial Examination

Class

Candidate Number

Marks

Question 25 (5 marks)

In an experiment to determine the ammonia concentration in a bottle of cloudy ammonia, a student transferred a 25.00mL aliquot of cloudy ammonia to a 250.0mL volumetric flask and made it up to 250.0 mL with deionised water. The contents of this volumetric flask were thoroughly mixed. The student then titrated 25.00mL aliquots of this solution against 0.2530M HCl and obtained an average titre volume of 22.50mL. Assume the density of the ammonia solution is 0.950 g/mL.

Calculate the concentration of NH_3 in the cloudy ammonia as %w/w (grams per 100g of solution).

-
-
. 7
-

•••••••••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••••••

2006 Trial Examination

Class

Candidate Number

BLANK PAGE

2006 Trial Examination

Class

Candidate Number

Marks

Question 26 (7 marks)

Chemic importa	al monitoring of the concentrations of ions such as Mg^{2+} , Ca^{2+} , NO_3^{-} , PO_4^{3-} is int to manage the quality of water resources.	
For <u>one</u>	cation and <u>one</u> anion from the list above:	
(a)	Identify a possible source and state whether the source is natural or a result of human activity.	2
	•••••••••••••••••••••••••••••••••••••••	
(b)	Explain why monitoring and management of the concentrations of the <u>two</u> ions you have chosen is important.	2
	••••••	
(c)	Discuss the range and chemistry of tests used to monitor <u>one</u> of the ions you have chosen.	3

Fo	orm VI Chemistry		2006 Trial Examination
		Class	Candidate Number
Questi	on 27 (8 marks)		Marks
Human atmosp	activity has caused changes in the here.	e composition and struc	ture of the
(a)	Identify the origins of CFCs and	halons in the atmosphe	re. 1
		••••••	
(b)	Explain the impacts of CFCs and	l halons on the atmosph	ere. 4
	Question 27	continued on next pag	e.

	Form VI Chemistry	2006 Trial Examina						
	Question 27 continued	Class	Candidate Number					
(c)	Assess the measures being taken CFCs.	to alleviate the problem	ms associated with 3					

Form VI Chemistry			2006 Trial Examination	า
		Class	Candidate Number	
Quest	tion 28 (8 marks)		Ma	urks
(a)	Draw the structural formulas of name the functional groups in the functional groups in the functional groups in the functional groups in the function of the f	1-hexanol and propanoic nese molecules.	acid. Circle and	2
(b)	1-hexanol and 3,3-dimethyl-1-b has a higher boiling point than 3	utanol are isomers. Explai ,3-dimethyl-1-butanol.	n why 1-hexanol	2
(c)	Draw a fully labelled diagram of and propanoic acid in a school la	the apparatus needed to elevate to e	esterify 1-hexanol	2

Question 26 continued on next page.

~

Form VI Chemistry		2006 Trial Examination
Question 26 continued	Class	Candidate Number
(d) Explain why the apparatus you the apparatus below.	drew in (c) would be mo	ore appropriate than 2
bunsen —	beaker gauze tripod	

Form VI Chemistry 2006 Trial Examination Class Candidate Number BLANK PAGE

Form VI Chemistry 2006 Trial Examination Class Candidate Number Marks Question 29 (8 marks) It has been said that in the 21st century wars will be fought for access to natural resources such as oil and water, and some people feel that this has already begun. Discuss the need for alternative sources of the compounds presently obtained from petrochemicals and evaluate the effect that using these alternative sources will have on environmental concerns such as global warming.

8

Class

Candidate Number

BLANK PAGE

Section II			
		Class	Candidate Number
16 marks Attempt questio Allow about 35 r	n 30 in this section ninutes for this sec	ı. tion.	
Answer the quest Show all relevant	ion in a writing boo tworking in questic	oklet. Extra writing boo	klets are available. ns.
			Pages
Question 30	Industrial Che	emistry	27
Question 31	Elective 2		
Question 32	Elective 3		
Question 33	Elective 4		
X			
X			

2006 Trial Examination

2006 Trial Examination

Class

Candidate Number

Marks

Quest	ion 30	(16 marks)									
(a)	Most proce triox	t sulfuric acid is manufactured on the industrial scale using the Contact ess which involves the conversion of sulfur dioxide gas into sulfur ide gas.									
	(i)	Write a chemical equation for this reaction and an expression for the equilibrium constant, K.	1								
	(ii)	How does an increase in pressure affect the value of the equilibrium constant?	1								
(b)	Nitro produ	Nitrogen dioxide is a poisonous brown gas which may be involved in the production of photochemical smog.									
	In an and t tetrac	experiment 5.0 mol of dinitrogen tetraoxide were added to a 20L vessel he system reached equilibrium. At equilibrium 3.8 mol of dinitrogen oxide remained. Calculate the equilibrium constant, K, for this reaction:									
		$N_2O_{4(g)} \longrightarrow 2NO_{2(g)}$									
(c)	(i)	Describe one reaction in which concentrated sulfuric acid is acting as an oxidant. Include a relevant chemical equation.	2								
	(ii)	Describe one reaction in which concentrated sulfuric acid is acting as a dehydrating agent. Include a relevant chemical equation.	2								
(d)	Durin analy	ng your practical work you have performed a first-hand investigation to rese the effect of disturbing an equilibrium reaction.									
	(i)	Outline the procedure you used in this investigation.	3								
	(ii)	Explain how you analysed the equilibrium reaction in a qualitative way.	3								

2006 Trial Examination

Chemistry

Data Sheet

Avogadro's constant, N_A	$6.022 \text{ x} 10^{23} \text{ mol}^{-1}$	
Volume of 1 mole ideal gas:		
at 0 °C (273 K)		22.71L
	at 25 °C (298K)	24.79 L
Ionisation constant for water a	1.0×10^{-14}	
Specific heat capacity of wate	$4.18 \times 10^3 \text{ Jkg}^{-1}\text{K}^{-1}$	

Some useful formulae

 $pH = -\log_{10}[H^+]$

 $\Delta H = - mC\Delta T$

Standard Potentials

K	$^{+} + e^{-}$	~~`	K _(s)	-2.9	94 V
В	$a^{2+} + 2e^{-}$	~~~	Ba _(s)	-2.9	91 V
Ca	$a^{2+} + 2e^{-}$	⇒	Ca _(s)	-2.8	37 V
N	$a^{+} + e^{-}$	~~~	Na _(s)	-2.7	71 V
М	$(g^{2^+} + 2e^-)$	~~~	Mg _(s)	-2.3	36 V
Α	$1^{3+} + 3e^{-}$	<u>→</u>	Al _(s)	-1.6	58 V
М	$n^{2^+} + 2e^-$	⇒	Mn _(s)	-1.1	8 V
H	$_{2}O + e^{-}$	~~~	$\frac{1}{2}$ H _{2(g)} + OH	-0.8	33 V
Zı	$n^{2+} + 2e^{-}$	⇒	Zn _(s)	-0.7	76 V
Fe	$e^{2+} + 2e^{-}$	\Rightarrow	Fe _(s)	-0.4	4 V
N	$i^{2+} + 2e^{-}$		Ni _(s)	-0.2	24 V
Sr	$n^{2+} + 2e^{-}$		Sn _(s)	-0.1	4 V
Pt	$p^{2+} + 2e^{-}$	~~~	Pb _(s)	0.1	3 V
Н	+ + e ⁻		¹ / ₂ H _{2(g)}	0.0	00 V
SC	$D_4^{2-} + 4H^+ + 2e^-$	<u></u>	$SO_{2(g)} + 2H_2O$	0.1	6 V
Cu	$a^{2+} + 2e^{-}$	~~~	Cu _(s)	0.3	34 V
1/2	$O_{2(g)} + H_2O + 2e^-$	\rightleftharpoons	20H ⁻	0.4	40 V
Cu	$1^{+} + e^{-}$,	Cu _(s)	0.5	52 V
1/2	$I_{2(s)} + e^{-}$	~~~	I	0.5	54 V
1/2	$I_{2(aq)} + e^{-}$	~~~	Ι-	0.6	52 V
Fe	$e^{3+} + e^{-1}$	~~``	Fe ²⁺	0.7	'7 V
Aş	$g^+ + e^-$	~~~	Ag _(s)	0.8	30 V
1/2	$Br_{2(1)} + e^{-}$	~~~	Br ⁻	1.0)8 V
1/2	$Br_{2(aq)} + e^{-}$	\rightleftharpoons	Br⁻	1.1	0 V
1/2	$O_2 + 2H^+ + 2e^-$	~~~``	H ₂ O	1.2	!3 V
1/2	$Cr_2O_7^{2-} + 7H^+ + 3e^-$	~~~	$Cr^{3+} + \frac{7}{2}H_2O$	1.3	6 V
1/2	$Cl_{2(g)} + e^{-}$,	Cl⁻	1.3	6 V
1/2	$Cl_{2(aq)} + e^{-}$	~~``	Cl⁻	1.4	0 V
М	$nO_4^- + 8H^+ + 5e^-$,	$Mn^{2+} + 4H_2O$	1.5	i v
1/2	$F_{2(g)} + e^{-}$	~~~	F ⁻	2.8	59 V

12 He 4.003	22	20.18 Near	At 8	39.95 Arren	8. ²	83.80	Sch Nypun	131.3	98 98	222.0]										
L	or	Plumine	50	35,45 Ottorine	ልጽ	06.62	53	126.9	85 85	[210.0]					175.0	i	8	Lr [262.1]		
	0.00	0.000	S 6	32.07 Sulfe	23	78.96	22 er	127.6	5 5 C	[209.0]				02	173.0 Viterbium		102	259.1] [259.1]		
	ĿZ.	Nitrogen	1.24	30.97 Photophone	E S	74.92	55	121.8	1 684	209.0				69 E	168.9 Thaiinm		101	Md [258.1] Venterium		
	Co	Carbon	Si 4	28.09 Silicon	ନ୍ତ	72.64	2050	118.7	25 E	207.2				861 891	167.3 Ethin		100	Fm [257.1]	-linete	0.44
	Be	10.81 Perro	AI AI	26.98 Auninian	ଳକ୍ଷ	69.72	46 1	114.3] ∞F	204.4 The liter				167 H	164.9 Helmien	-	66	Es [252.1] Enteritar	and the second	1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 -
လ					с Бщ	65.41 Zire	89D	112.4	80 Ho	200.6				38	162.5 Diversion		98	Cf [251.1] Gilientin	r Si serora eu	we whether w
	arread ,	ncal			ងបី	63.55 Gama	47 Ag	107.9	79 79	197.0	Rg	[272] Romignien		કુલ	158.9 Terbium		67	[247.1]	1 The Policy of the Policy of	
ᄥ	Symbol of ch	Name of clar			89 77	58.69 Nickel	94 94	106.4 Pelladium	73 P1	195.1 Platnam		[2/1] Dametačnicn		ৰম	157.3 Guèdinium		96	247.1 B	he most com	ip and ⁹⁹ Tc
BLE OF	19 MA 0.70:	19/.U			29	58.93 Cobalt	45 Rh	102.9 Rhotum	77 Ir	192.2 bister	109 M	(208) Meitzenten		ES	152.0 Europium		<u>95</u>	Am [243.1] Amenicium	n jo sau ou	5 ET
DIC TA	Itomic Number	IRGA SELECT			26 Fe	55.85 Item	44 Ru	101.1 Ruthenium	89	190.2 Osmium	108 Hs	[//7] Hauitum		C3 mS	150.4 Samanum		94	24.1) 241.1) Pitterin	e relative ato	or the isotope
D EKIO	4				\$22 \$4	54.94 Manganeac	743 7	[97.91] Technotium	75 Re	186.2 Rheniun	Bh Bh	[264.]] Behrium		ভূদ্	Protectiation		63	Np [237.0] Nepterien	nown.	c are given fo
					40 42	52.00 Chromium	42 Nb	95.94 Molyhdenum	74 W	183.8 Tungsten	106 Sg 1125 11	[200.1] Scaborgium		9¥	144.2 Nardymium		92	U 238.0 Изпёш	veight is not l	of Np and T
					23	Vaminuti Vanishing	4 8	92.91 Nidelium	73 13	180.9 Tarrahm	105 Do Do	[202.1] Dubráva		ድድ	140.9 Procodynaium		16	73 231.0 Protostinium	the atomic v	omic weights
					1122	4/.8/ Herium	54 24	91.22 Zinconium	72 Hf	178.5 Hafaium	104 Rf	[⊥.1.02] Rithm&read	رم در	සිට	140.1 Ceilin		8F	232.0 Therium	nafW	The at
					28	44.96 Scandium	39 Y	88.91 Vitnum	5701	cobinational.	89□03	Actinides	Lanthanide	57 La	138.9 Lautanan	Actinides	89	. Actinitan		
	4₩ 2	2.012 Ecryflium	Mg 12	24.51 Magnetium	<u></u> ଅଟ ୍ରି	40.08 Calaium	Sr.38	87.62 Strantium	B26	137.3 Baniura	88 Ra [776 01	Redium	1			,	۰ د	ngalalari (mirri, duran) na		
1 Н 1.000.1 пеать(Н	E.I.	1.42.0 Likim	=2 2	22.99	€×	Potentium	37 Rb	85.47 Rubidium	55 2	132.9 Coesium	87 Fr (723 01	Francium								

Page 30 of 30