### SYDNEY GRAMMAR SCHOOL



### 2006 FORM VI TRIAL HSC EXAMINATION

# Chemistry

#### **General Instructions**

- Reading time 5 minutes.
- Working time 3 hours
- Board-approved calculators may be used
- Write using blue or black pen
- Draw diagrams using pencil
- A Data Sheet and Periodic Table are provided at the back of this paper
- Write your candidate number and class at the top of each page in Part B and on the answer booklet

| CHECKLIST                          |   |
|------------------------------------|---|
| Each boy should have the following | : |
| 1 Question Paper                   |   |
| 1 Multiple Choice Answer Sheet     |   |
| 1 8 - Page Booklet                 |   |

# Chemistry Classes.

| 1 JAG | 2 JME  | 3 AKBB |
|-------|--------|--------|
| 4 MMB | 5 AKBB | 6 JAG  |

Section I Pages 2 - 24

Total marks (100)

This section has two parts, Part A and Part B

#### Part A

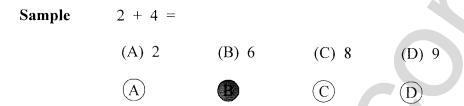
Total marks (15)

- Attempt Questions 1-15
- Allow about 25 minutes for this Section

#### Part B

Total marks (69)

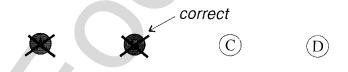
- Attempt Questions 16-29
- Allow about 2 hours for this Section


Section II Pages 25-28 Total marks (16)

- Attempt Question 30 in this section.
- Allow about 35 minutes for this Section

# Part A Total marks (15) Attempt Questions 1-15 Allow about 25 minutes for this Part

Use the multiple-choice Answer Sheet.


Select the alternative A, B, C or D that best answers the question. Fill the response circle completely.

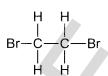


If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.



If you change your mind and have crossed out what you consider to be the correct answer, then indicate this by writing the word *correct* and drawing an arrow as follows.




- 1 What is a free radical?
  - (A) An atom or molecule with an unpaired electron.
  - (B) A particle that is free to move in a chemical reaction.
  - (C) A charged particle that is free to move.
  - (D) An organo-halogen compound.
- Which of the following is the catalyst used in the Haber process?
  - (A) iron-iron oxide
  - (B) zeolite
  - (C) conc  $H_2SO_4$
  - (D)  $V_2O_5$
- Which of the following substances could not be produced by ethene undergoing an addition reaction?

(A)



(B)

(C)



(D)

- Which of the following statements best describes condensation polymerisation?
  - (A) The reaction between many units, whereby the units link to each other across their double bonds to form a chain.
  - (B) The reaction between many units, whereby the functional groups of the units react in such a way as to form a chain and expel water molecules.
  - (C) The reaction between many units, whereby the amine group of one molecule reacts with the carboxyl group of the next to form a chain and expel water.
  - (D) The reaction between many units, whereby the units link to each other to form a chain and to expel many small molecules.

- Which of the following represents the ideal conditions for fermentation to occur?
  - (A) Air is excluded; zymase(yeast) is added;  $\approx 35^{\circ}$ C.
  - (B) Conc.  $H_2SO_4$  is added; zymase(yeast) is present;  $\approx 35^{\circ}C$ .
  - (C) Mixture is oxygenated; zymase(yeast) is added;  $\approx 25^{\circ}$ C.
  - (D) Low O<sub>2</sub> environment; zymase(yeast) is added; mixture is refluxed.
- The first four steps in the decay series for Uranium 238 can be represented as follows:

$${}^{238}_{92}U \xrightarrow[\text{Step 1}]{234}\text{Th} \xrightarrow[\text{Step 2}]{234}\text{Pa} \xrightarrow[\text{Step 3}]{234}U \xrightarrow[\text{Step 4}]{230}\text{Th}$$

(II)

The types of radiation which accompany each of steps 1 to 4, are respectively-

- (A)  $\beta$ ,  $\alpha$ ,  $\alpha$ ,  $\beta$
- (B)  $\alpha$ ,  $\beta$ ,  $\gamma$ ,  $\delta$
- (C)  $\alpha$ ,  $\beta$ ,  $\beta$ ,  $\alpha$
- (D)  $\beta$ ,  $\gamma$ ,  $\gamma$ ,  $\beta$
- Which of the compounds below are isomers?

$$\begin{array}{c|cccc} CI & H & F \\ & & & | & | & | \\ CI-C-C-C-F & & | & | & | \end{array}$$

- (III) 1,1,1-trichloro-2,2,2-trifluoroethane
- (IV) 3,3,3-trichloro-1,1,1-trifluoropropane
- (A) (I) and (IV)
- (B) (II) and (III)
- (C) (I) and (II)
- (D) (III) and (IV)

- A lawn food containing 56.6% ammonium sulfate (FW = 132) was analysed by precipitating the sulfate as barium sulfate (FW = 233). What is the mass of dry barium sulfate expected from 1.00g of the lawn food?
  - (A) 0.566g
  - (B) 1.00g
  - (C) 1.77g
  - (D) 2.00g
- What is the change in pH when 10mL of 0.1M HCl<sub>(aq)</sub> is diluted with 990mL of deionised water?
  - (A) increase by 2
  - (B) decrease by 2
  - (C) increase by 3
  - (D) decrease by 3
- 10 How is a Bronsted-Lowry acid best described?
  - (A) A substance which forms H<sup>+</sup> ions in water
  - (B) A substance which contains oxygen
  - (C) A substance which is a proton donor
  - (D) A substance which contains hydrogen
- What is the name of the ester below?

- (A) ethyl octanoate
- (B) octyl ethanoate
- (C) methyl octanoate
- (D) heptyl ethanoate
- Which of the salts below produces a basic solution when dissolved in water?

Page 5 of 30

- (A) NH<sub>4</sub>Cl
- $(\bar{B})$  KNO<sub>3</sub>
- (C) KCH<sub>3</sub>CH<sub>2</sub>COO
- (D) FeCl<sub>3</sub>

A galvanic cell is set up using magnesium and copper half-cells. The equation for the reaction in the cell is:

$$Mg_{(s)} + Cu^{2+}_{(aq)} \rightarrow Mg^{2+}_{(aq)} + Cu_{(s)}$$

Which of the following statements applies when the galvanic cell is producing electricity?

- (A) The mass of the copper electrode decreases.
- (B) Electrons flow from the copper half-cell to the magnesium half-cell.
- (C) Electrons are lost from magnesium atoms.
- (D) Anions flow through the salt bridge from the magnesium half-cell to the copper half-cell.
- Which of the following solutions contains the greatest number of moles of solute?
  - (A)  $10.0 \text{mL of } 0.50 \text{M HCl}_{(aq)}$
  - (B)  $20.0 \text{mL of } 0.40 \text{M HCl}_{(aq)}$
  - (C)  $30.0 \text{mL of } 0.30 \text{M HCl}_{(aq)}$
  - (D)  $40.0 \text{mL of } 0.20 \text{M HCl}_{(aq)}$
- Which of the following statements best describes how a catalyst operates in a reversible reaction?
  - (A) The catalyst increases the enthalpy change of the reverse reaction.
  - (B) The catalyst decreases the enthalpy change of the forward reaction.
  - (C) The catalyst decreases the activation energy of both the forward and backward reactions.
  - (D) The catalyst increases the activation energy of the reverse reaction.

| Form VI Chemistry |                                                                                      |                        | 2006 Trial Examination |
|-------------------|--------------------------------------------------------------------------------------|------------------------|------------------------|
| To A              | art B<br>otal marks (69)<br>ttempt ALL Questions<br>llow about 2 hours for this Part | Class                  | Candidate Number       |
|                   | nswer the questions in the spaces p<br>now <b>all</b> relevant working in question   |                        | ons                    |
|                   | on 16 (6 marks)                                                                      |                        | Marks                  |
|                   | start of the HSC course you perfor uish between alkanes and alkenes.                 | med an experiment that | t allowed you to       |
| (a)               | Identify an alkane and an alkene other reagents used.                                |                        | experiment plus any 2  |
| (b)               | Identify the hazards involved in                                                     | this experiment.       |                        |
| (c)               | Write an equation for any reaction                                                   | on which occurred.     | 2                      |

| C | la | 22 |
|---|----|----|

Candidate Number

#### Question 17 (3 marks)

| Distinguish between stable and radioactive isotopes and identify the conditions which a nucleus is unstable. | ınder |
|--------------------------------------------------------------------------------------------------------------|-------|
|                                                                                                              |       |
|                                                                                                              |       |
|                                                                                                              |       |
|                                                                                                              |       |
|                                                                                                              |       |
|                                                                                                              |       |

# Question 18 (2 marks)

Complete the following table, which refers to a number of titrations carried out in a school laboratory using solutions in the range 0.1-0.5M.

| Titrant         | Other reactant   | Appropriate indicator |
|-----------------|------------------|-----------------------|
| HC1             | NaOH             |                       |
| CH₃COOH         | LiOH             |                       |
| NH <sub>3</sub> | HNO <sub>3</sub> |                       |

2

3

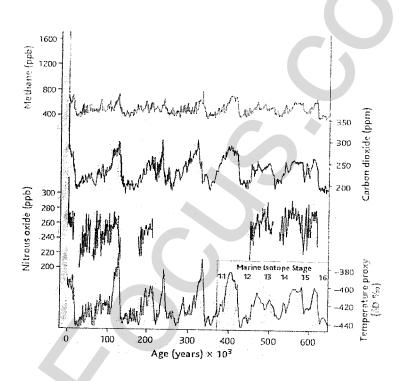
| Form VI Chemistry                                                                                      |                          | 2006 Trial Examination |
|--------------------------------------------------------------------------------------------------------|--------------------------|------------------------|
|                                                                                                        | Class                    | Candidate Number       |
| Question 19 (4 marks)                                                                                  |                          | Marks                  |
| Question 19 (4 marks)                                                                                  |                          |                        |
| (a) Draw a labelled diagram of an or half cells, each containing a met the anode, and the salt bridge. |                          |                        |
|                                                                                                        |                          |                        |
| (b) Calculate the voltage of this cell                                                                 | under standard condition | ons. 1                 |
|                                                                                                        |                          |                        |

| Form VI Chemistry |       | 2006 Trial Examination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   |       | The second secon |
|                   | Class | Candidate Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| Form VI Chemistry                                                                |                            | 2006 Trial Examinat                   | ion   |
|----------------------------------------------------------------------------------|----------------------------|---------------------------------------|-------|
|                                                                                  | Class                      | Candidate Number                      |       |
|                                                                                  |                            | ľ                                     | Marks |
| Question 20 (3 marks)                                                            |                            |                                       | ,     |
| Explain why the Haber process is based energy, reaction rate and equilibrium.    | on a delicate balancing ac |                                       | 3     |
|                                                                                  |                            |                                       |       |
|                                                                                  |                            |                                       |       |
|                                                                                  |                            |                                       |       |
|                                                                                  |                            | · · · · · · · · · · · · · · · · · · · |       |
|                                                                                  |                            |                                       |       |
| Question 21 (3 marks)                                                            |                            |                                       |       |
| Compare one physical and one chemica and account for the differences on the base |                            |                                       | 3     |
|                                                                                  |                            |                                       |       |
|                                                                                  |                            |                                       |       |
|                                                                                  |                            |                                       |       |
|                                                                                  |                            |                                       |       |
|                                                                                  |                            |                                       |       |
|                                                                                  |                            |                                       |       |

| Form | VΙ  | Chemistry |
|------|-----|-----------|
|      | V I | Chemistry |

| 2006  | Trial | T.,   | ination |
|-------|-------|-------|---------|
| zuun. | Triai | ⊢ xam | unation |


| Class | Candidate Number |
|-------|------------------|

Marks

#### Question 22 (4 marks)

Consider the data on the greenhouse gases presented in the graph below.

The greenhouse gas and deuterium  $(\delta D)$  records for the past 650,000 years from ice cores.  $\delta D$ , the deviation of the deuterium/hydrogen ratio from an isotope standard, is a proxy for air temperature; more positive values indicate warmer conditions.



| (a) | Which gas was most abundant in the atmosphere 500 000 years ago?              | 1 |
|-----|-------------------------------------------------------------------------------|---|
|     |                                                                               |   |
| (b) | Write chemical formulas for the three gases.                                  | 1 |
|     |                                                                               |   |
| (c) | Assess the validity of the claim that these three gases are greenhouse gases. | 2 |
|     |                                                                               |   |
|     |                                                                               |   |
|     |                                                                               |   |
|     |                                                                               |   |

| Form VI Chemistry                           |                            | 2006 Trial Examination |
|---------------------------------------------|----------------------------|------------------------|
|                                             |                            |                        |
|                                             | Class                      | Candidate Number       |
|                                             |                            | Marks                  |
| Question 23 (4 marks)                       |                            |                        |
| Discuss the use of neutralisation in dealir | ng with an acid spill in a | laboratory. 4          |
|                                             |                            |                        |
|                                             |                            |                        |
|                                             |                            |                        |
|                                             |                            |                        |
|                                             |                            |                        |
|                                             |                            | ······                 |
|                                             |                            |                        |
|                                             |                            |                        |
|                                             |                            |                        |

|       | Form VI Chemistry                                        |                                  | 2006 Trial Examination |    |
|-------|----------------------------------------------------------|----------------------------------|------------------------|----|
|       |                                                          | Class                            | Candidate Number       |    |
| Ques  | stion 24 (4 marks)                                       |                                  | Mar                    | ks |
| One a | acidic oxide found in the atmosph                        | ere is $SO_{2(g)}$ .             |                        |    |
| (a)   | Name one natural and one ind                             | ustrial source of $SO_{2(g)}$ .  |                        | 1  |
|       |                                                          |                                  | ······                 |    |
| (b)   | Write an equation to demonstr                            | ate the acidic nature of SC      | ) <sub>2(g)</sub> .    | 1  |
| (c)   | At 25°C and 100kPa, what volumes to 1.05M sulfurous acid | ume of $SO_{2(g)}$ would be ned? | eded to produce        | 2  |
|       |                                                          |                                  |                        |    |
|       |                                                          |                                  |                        |    |
|       |                                                          |                                  |                        |    |
|       |                                                          |                                  |                        |    |

| Form VI Chemistry                                                                                                                                                                                                                                    |                                                                                            | 2006 Trial Examinatio                                                         | n<br> |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------|
|                                                                                                                                                                                                                                                      | Class                                                                                      | Candidate Number                                                              |       |
| Question 25 (5 marks)                                                                                                                                                                                                                                |                                                                                            | М                                                                             | arks  |
| In an experiment to determine the ammor ammonia, a student transferred a 25.00ml volumetric flask and made it up to 250.0 this volumetric flask were thoroughly mix aliquots of this solution against 0.2530M 22.50mL. Assume the density of the amm | L aliquot of cloudy am mL with deionised wat xed. The student then t HCl and obtained an a | monia to a 250.0mL er. The contents of itrated 25.00mL verage titre volume of |       |
| Calculate the concentration of N per 100g of solution).                                                                                                                                                                                              | H <sub>3</sub> in the cloudy ammo                                                          | onia as %w/w (grams                                                           | 5     |
|                                                                                                                                                                                                                                                      |                                                                                            |                                                                               |       |
|                                                                                                                                                                                                                                                      |                                                                                            |                                                                               |       |
|                                                                                                                                                                                                                                                      |                                                                                            |                                                                               |       |
|                                                                                                                                                                                                                                                      |                                                                                            |                                                                               |       |
|                                                                                                                                                                                                                                                      |                                                                                            |                                                                               |       |

| Form VI Chemistry |       | 2006 Trial Examination |
|-------------------|-------|------------------------|
|                   |       |                        |
|                   | Class | Candidate Number       |

| Fo      | rm VI Chemistry                                                         |                                         | 2006 Trial Examination                                                             |
|---------|-------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------|
|         | \{                                                                      | Class                                   | Candidate Number                                                                   |
| Questic | on 26 (7 marks)                                                         |                                         | Marks                                                                              |
|         | al monitoring of the concentration not to manage the quality of water r |                                         | Ca <sup>2+</sup> , NO <sub>3</sub> <sup>-</sup> , PO <sub>4</sub> <sup>3-</sup> is |
| For one | cation and one anion from the list                                      | above:                                  |                                                                                    |
| (a)     | Identify a possible source and sta of human activity.                   | te whether the source is                | s natural or a result 2                                                            |
|         |                                                                         |                                         |                                                                                    |
|         |                                                                         |                                         |                                                                                    |
|         |                                                                         |                                         |                                                                                    |
| (b)     | Explain why monitoring and man ions you have chosen is importan         |                                         | trations of the <u>two</u> 2                                                       |
|         |                                                                         |                                         |                                                                                    |
|         |                                                                         |                                         |                                                                                    |
|         |                                                                         |                                         |                                                                                    |
|         |                                                                         |                                         |                                                                                    |
| (c)     | Discuss the range and chemistry of have chosen.                         | of tests used to monitor                | one of the ions you 3                                                              |
|         |                                                                         |                                         |                                                                                    |
|         |                                                                         |                                         |                                                                                    |
|         |                                                                         |                                         |                                                                                    |
|         |                                                                         |                                         |                                                                                    |
|         |                                                                         | • • • • • • • • • • • • • • • • • • • • |                                                                                    |

| F               | orm VI Chemistry                               |                       | 2006 Trial Examination |
|-----------------|------------------------------------------------|-----------------------|------------------------|
|                 |                                                | Class                 | Candidate Number       |
| Quest           | ion 27 (8 marks)                               |                       | Marks                  |
| Humai<br>atmosp | n activity has caused changes in the<br>ohere. | e composition and st  | ructure of the         |
| (a)             | Identify the origins of CFCs and               | halons in the atmos   | phere. 1               |
|                 |                                                |                       |                        |
| (b)             | Explain the impacts of CFCs and                | I halons on the atmo- | sphere. 4              |
|                 |                                                |                       |                        |
|                 |                                                |                       |                        |
|                 |                                                |                       |                        |
|                 |                                                |                       |                        |
|                 |                                                |                       |                        |

Question 27 continued on next page.

|     | Form VI Chemistry                       |                          | 2006 Trial Examination |
|-----|-----------------------------------------|--------------------------|------------------------|
|     | Question 27 continued                   | Class                    | Candidate Number       |
| (c) | Assess the measures being taken CFCs.   | to alleviate the problem | ms associated with 3   |
|     |                                         |                          |                        |
|     |                                         |                          |                        |
|     |                                         |                          |                        |
|     | ••••••••••••••••••••••••••••••••••••••• | •••••••••••              |                        |
|     |                                         |                          |                        |
|     |                                         |                          |                        |

| ſ    | Form VI Chemistry                                                                                            | 2006 Trial Examination |
|------|--------------------------------------------------------------------------------------------------------------|------------------------|
|      | Class                                                                                                        | Candidate Number       |
| Ques | tion 28 (8 marks)                                                                                            | Marks                  |
| (a)  | Draw the structural formulas of 1-hexanol and propand name the functional groups in these molecules.         | pic acid. Circle and 2 |
| (b)  | 1-hexanol and 3,3-dimethyl-1-butanol are isomers. Exphas a higher boiling point than 3,3-dimethyl-1-butanol. | olain why 1-hexanol 2  |
|      |                                                                                                              |                        |
|      |                                                                                                              |                        |
|      |                                                                                                              |                        |
|      |                                                                                                              |                        |
| (c)  | Draw a fully labelled diagram of the apparatus needed t and propanoic acid in a school laboratory.           | o esterify 1-hexanol 2 |
|      |                                                                                                              |                        |

Question 26 continued on next page.

|     | Form VI Chemistry                                  |                           | 2006 Trial Examination |
|-----|----------------------------------------------------|---------------------------|------------------------|
|     | Question 26 continued                              | Class                     | Candidate Number       |
|     |                                                    |                           | Marks                  |
| (d) | Explain why the apparatus you the apparatus below. | drew in (c) would be more | e appropriate than 2   |
|     | bunsen —                                           | beaker gauze tripod       |                        |
|     |                                                    |                           |                        |
|     |                                                    |                           | <b></b>                |

| Form | VI | Chemistry |
|------|----|-----------|
|------|----|-----------|

2006 Trial Examination

Class

Candidate Number

| Form VI Chemistry                                                                                                                |                                                 | 2006 Trial Examination                    |
|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------|
| ·                                                                                                                                |                                                 | 2000 That Examination                     |
|                                                                                                                                  | Class                                           | Candidate Number                          |
|                                                                                                                                  |                                                 | Marks                                     |
| Question 29 (8 marks)                                                                                                            |                                                 | Marks                                     |
| It has been said that in the 21 <sup>st</sup> century waresources such as oil and water, and some                                | ars will be fought for people feel that the     | or access to natural is has already begun |
| Discuss the need for alternative sources of petrochemicals and evaluate the effect that on environmental concerns such as global | of the compounds property at using these altern | resently obtained from                    |
| •••••••••••••••••••••••••••••••••••••••                                                                                          |                                                 |                                           |
|                                                                                                                                  |                                                 |                                           |
|                                                                                                                                  |                                                 |                                           |
|                                                                                                                                  |                                                 | ······                                    |
|                                                                                                                                  |                                                 |                                           |
|                                                                                                                                  |                                                 |                                           |
|                                                                                                                                  |                                                 |                                           |
|                                                                                                                                  |                                                 |                                           |
|                                                                                                                                  |                                                 |                                           |
|                                                                                                                                  |                                                 | •••••                                     |
|                                                                                                                                  | ••••••                                          | ••••••                                    |
|                                                                                                                                  |                                                 | •••••                                     |
|                                                                                                                                  | •••••••••••••••••••••••••••••••••••••••         |                                           |
|                                                                                                                                  | ••••••                                          |                                           |
|                                                                                                                                  | •••••                                           |                                           |

| Form VI Chemistry |       | 2006 Trial Examination |
|-------------------|-------|------------------------|
|                   |       |                        |
|                   | Class | Candidate Number       |

| Section II                              |       |                  |
|-----------------------------------------|-------|------------------|
| _                                       | Class | Candidate Number |
| 16 marks                                |       |                  |
| Attempt question 30 in this section.    |       |                  |
| Allow about 35 minutes for this section | 1.    |                  |

Answer the question in a writing booklet. Extra writing booklets are available. Show **all** relevant working in questions involving calculations.

|             |                      |       | Pages |
|-------------|----------------------|-------|-------|
| Question 30 | Industrial Chemistry | ••••• | 27    |
| Question 31 | Elective 2           |       |       |
| Question 32 | Elective 3           |       |       |
| Question 33 | Elective 4           |       |       |
| Question 34 | Elective 5           |       |       |

| Class | Candidate Number |
|-------|------------------|

| Class | Candidate Number |
|-------|------------------|

Marks

1

2

3

Question 30 (16 marks)

- (a) Most sulfuric acid is manufactured on the industrial scale using the Contact process which involves the conversion of sulfur dioxide gas into sulfur trioxide gas.
  - (i) Write a chemical equation for this reaction and an expression for the equilibrium constant, K.
  - (ii) How does an increase in pressure affect the value of the equilibrium constant?
- (b) Nitrogen dioxide is a poisonous brown gas which may be involved in the production of photochemical smog.

  In an experiment 5.0 mol of dinitrogen tetraoxide were added to a 20L vessel

and the system reached equilibrium. At equilibrium 3.8 mol of dinitrogen tetraoxide remained. Calculate the equilibrium constant, K, for this reaction:

$$N_2O_{4(g)}$$
  $\Longrightarrow$   $2NO_{2(g)}$ 

- (c) Describe one reaction in which concentrated sulfuric acid is acting as an oxidant. Include a relevant chemical equation.
  - (ii) Describe one reaction in which concentrated sulfuric acid is acting as a dehydrating agent. Include a relevant chemical equation.
- (d) During your practical work you have performed a first-hand investigation to analyse the effect of disturbing an equilibrium reaction.
  - (i) Outline the procedure you used in this investigation.
  - (ii) Explain how you analysed the equilibrium reaction in a qualitative way. 3

| Class | Candidate Number |
|-------|------------------|

# Chemistry

#### **Data Sheet**

| Avogadro's constant, N <sub>A</sub> |                       | 6.022 x10 <sup>23</sup> mol <sup>-1</sup>   |
|-------------------------------------|-----------------------|---------------------------------------------|
| Volume of 1 mole ideal gas:         | at 100 kPa and        |                                             |
|                                     | at 0 °C (273 K)       | 22.71L                                      |
|                                     | at 25 °C (298K)       |                                             |
| Ionisation constant for water       | $1.0 \times 10^{-14}$ |                                             |
| Specific heat capacity of water     | er                    | $4.18 \times 10^3  \mathrm{Jkg^{-1}K^{-1}}$ |

#### Some useful formulae

 $pH = -\log_{10}[H^+]$ 

 $\Delta H = - mC\Delta T$ 

#### **Standard Potentials**

| $K^+ + e^-$                                                                                             | <del>~~</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $K_{(s)}$                         | -2.94 V           |
|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------|
| $Ba^{2+} + 2e^{-}$                                                                                      | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $Ba_{(s)}$                        | -2.91 V           |
| $Ca^{2+} + 2e^{-}$                                                                                      | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $Ca_{(s)}$                        | -2.87 V           |
| $Na^+ + e^-$                                                                                            | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $Na_{(s)}$                        | -2.71 V           |
| $Mg^{2+} + 2e^{-}$                                                                                      | <del>~</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $Mg_{(s)}$                        | -2.36 V           |
| $Al^{3+} + 3e^{-}$                                                                                      | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $Al_{(s)}$                        | -1.68 V           |
| $Mn^{2+} + 2e^-$                                                                                        | <del>=</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $Mn_{(s)}$                        | -1.18 V           |
| $H_2O + e^{-}$                                                                                          | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\frac{1}{2}$ $H_{2(g)} + OH^{-}$ | -0.83 V           |
| $Zn^{2+} + 2e^{-}$                                                                                      | <del>=</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $Zn_{(s)}$                        | -0.76 V           |
| $Fe^{2+} + 2e^{-}$                                                                                      | <del>=</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $Fe_{(s)}$                        | -0.44 V           |
| $Ni^{2+} + 2e^{-}$                                                                                      | <del>-</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $Ni_{(s)}$                        | -0.24 V           |
| $Sn^{2+} + 2e^{-}$                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $Sn_{(s)}$                        | -0.14 V           |
| $Pb^{2+} + 2e^{-}$                                                                                      | <del>_</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $Pb_{(s)}$                        | -0.13 V           |
| $H^{+} + e^{-}$                                                                                         | <del>_</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1/2 H <sub>2(g)</sub>             | 0.00 V            |
| $SO_4^{2-} + 4H^+ + 2e^-$                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $SO_{2(g)} + 2H_2O$               | 0.16 V            |
| $Cu^{2+} + 2e^{-}$                                                                                      | <del>=</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $Cu_{(s)}$                        | 0.34 V            |
| $\frac{1}{2}O_{2(g)} + H_2O + 2e^-$                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2OH-                              | 0.40 V            |
| $Cu^+ + e^-$                                                                                            | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $Cu_{(s)}$                        | 0.52 V            |
| $V_2 I_{2(s)} + e^-$                                                                                    | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | I <sup></sup>                     | 0.54 V            |
| $\frac{1}{2} I_{2(aq)} + e^{-}$                                                                         | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | I-                                | 0.62 V            |
| $Fe^{3+}+e^{-}$                                                                                         | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $Fe^{2+}$                         | 0.77 V            |
| $Ag^+ + e^-$                                                                                            | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $Ag_{(s)}$                        | $0.80~\mathrm{V}$ |
| $\frac{1}{2} Br_{2(1)} + e^{-}$                                                                         | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\mathrm{Br}^-$                   | 1.08 V            |
| $^{1/2} Br_{2(aq)} + e^{-}$                                                                             | $\rightleftharpoons$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Br <sup>-</sup>                   | 1.10 V            |
| $\frac{1}{2}$ O <sub>2</sub> + 2H <sup>+</sup> + 2e <sup>+</sup>                                        | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $H_2O$                            | 1.23 V            |
| $\frac{1}{2} \operatorname{Cr}_2 \operatorname{O}_7^{2-} + 7 \operatorname{H}^+ + 3 \operatorname{e}^-$ | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $Cr^{3+} + \frac{7}{2} H_2O$      | 1.36 V            |
| $\frac{1}{2} \text{Cl}_{2(g)} + e^{-}$                                                                  | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cl <sup>-</sup>                   | 1.36 V            |
| $\frac{1}{2} \text{Cl}_{2(aq)} + e^{-}$                                                                 | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cl <sup>-</sup>                   | 1.40 V            |
| $MnO_4^- + 8H^+ + 5e^-$                                                                                 | de la company de | $Mn^{2+} + 4H_2O$                 | 1.51 V            |
| $\frac{1}{2} F_{2(g)} + e^{-}$                                                                          | <del>7</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | F <sup>-</sup>                    | 2.89 V            |

|             |      | 12      | E    |                         | . 00          |                 |                  |       |           | T          |       | ) [       | T           | (*    |             | 1         |          |               | T          |                    |                         |
|-------------|------|---------|------|-------------------------|---------------|-----------------|------------------|-------|-----------|------------|-------|-----------|-------------|-------|-------------|-----------|----------|---------------|------------|--------------------|-------------------------|
|             | ~걮   | 4.00    | Heli | 22                      | 20.           | N.              | 118              | 39.5  | Age       | 35.        | 2 6   | 2 2       | × 2         | 3 60  | X           | 86        | 22.2     |               |            | · MARINE Company   | <b>V</b>                |
|             |      |         |      | <b>о</b> п              | 9.6           | Fluoring        | 120              | 35,45 | Chlorine  | £24        | 79.90 | Promise   | 53          | 126.9 | lovinc      | 85        | 72.10.03 | Astatine      |            |                    |                         |
|             |      |         |      | ∞C                      | 16.00         | ्यांड्या        | 9.5              | 32.07 | Sulfe     | ¥9         | 78.96 | Sclenium  | 25te        | 127.6 | Telhuim     | \$2       | (209.0)  | Polonium      |            |                    |                         |
|             |      |         |      | rΖ                      | 14.01         | Nitrogen        | 20               | 30.97 | Phosphone | 33<br>As   | 74.92 | Astron    | <u>2</u> 25 | 121.8 | Appinony    | 25.4      | 209.0    | Pismuch       |            |                    |                         |
|             |      |         |      | ωU                      | 12.01         | Carbon          | 4.0              | 28.09 | Silicon   | 32         | 25.52 | Germanium | S.0         | 118.7 | E           | St        | 207.2    | para?         |            | projection and the |                         |
|             |      |         |      | νm                      | 10.81         | Perto           | E.S.             | 26.98 | Aleminian | 31         | 69.72 | Callium   | 49<br>In    | 114.8 | indium<br>m |           | 204.4    | Thellium      |            | TETROLOGICAL       | ~                       |
|             |      |         | L    | n der viellen er en men |               |                 | · destrict on on |       |           | 30<br>Zn   | 65.41 | Zir.      | %PO         | 112.4 | Cedmium     | 80<br>H2  | 200.6    | Mercary       |            |                    |                         |
| ELEMENTS    |      |         |      | Ħ                       |               | ***             |                  |       |           | ಸಿರೆ       | 63.55 | Chaper    | 47<br>Ag    | 107.9 | Sive        | 79<br>Au  | 197.0    | Pleg          | 1111       | [272]              | anigeralen              |
| W<br>W<br>E |      |         |      | Symbol of element       |               | Name of element |                  |       |           | <u>%%</u>  | 58.69 | Nickel    | 46<br>Pd    | 106.4 | Palladien   | 78        |          |               | 011        |                    | Ħ                       |
| L<br>O      |      | X<br>YE |      | ₹<br>76                 | 197.0         | Gold            |                  |       |           | 56         | 58.93 | Cobalt    | 45<br>Rh    |       | _           | 7.7       | 192.2    | Hilbert       | 109<br>109 | [268]              | Meitzenium Da           |
| IC TABLE    |      |         | i.   | Alonne Number           | Atomic Weight |                 |                  |       |           | 26<br>Fe   | 55.85 | bren      |             |       |             | 92<br>Sp. | 190.2    |               | ļ          |                    |                         |
| PERIODIC    |      |         |      | Alon                    | 数で            |                 |                  | <     |           | %25<br>∰25 | 54.94 |           | £5          |       | -           | 75<br>Re  |          |               | 107<br>RA  |                    | $\dashv$                |
|             |      |         |      |                         |               |                 |                  |       | -         |            |       |           |             |       | _           | 43        |          |               |            |                    |                         |
|             |      |         |      |                         |               |                 |                  |       | H         | +          |       |           | ******      |       |             | 73<br>Ia  |          |               |            |                    | _                       |
|             |      |         |      |                         |               |                 |                  |       | -         |            |       |           |             |       | -           | 型25       |          |               |            |                    |                         |
|             |      |         |      | 4                       |               |                 |                  |       | -         |            |       | -         | 39<br>Y     |       |             |           |          | Lastharides H |            | [2                 | Actinides Rutherfordium |
|             |      |         | [    | y                       | 71.5          | Fig.            | C1' 50           | 31    | +         |            |       | -         |             |       | -           |           |          | 4             |            |                    | -                       |
| Γ           |      | o F     | +    |                         |               | -               |                  |       | $\dashv$  |            |       | -+        |             |       |             | <br>&&    |          |               |            |                    |                         |
|             | -H 5 | Huthrey |      | ~ <u>`</u>              | 6.94          | Libium          | =2               | 22.94 | Society   | ~~<br>₽×   | 39.10 | Potensier | F. 2        | 85.47 | Rubidium    | 55<br>S   | 132.9    | Cacatem       | ₩£         | [223.0             | Finncium                |

|            |                   | L       | -  | 1        | 175.0 |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|------------|-------------------|---------|----|----------|-------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|            |                   | 0/      | \$ | ,        | 1/3.0 | V. 18            | ווענטווייי                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|            |                   | 69      | E  |          | 168.9 | 1                | 1 (21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|            | The second second | 68      | ıŁ |          | 16/3  |                  | um no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|            |                   | 67      | £  |          | 7.70  | Charleman        | THE STREET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|            |                   | 66      | Č  | ,        | [67.5 | D                | Treatment of the contract of t |  |
|            |                   | 65      | Ę  |          | 2000  | 1                | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|            |                   | 3       | Y  | r.       | 5/5   | Carried Services |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|            | -                 | 63      | ជី | 0 031    | 0.701 | C. market .      | 25.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|            |                   | 62      | ES | 200      | 120.4 | Samenium         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|            |                   | 91      | Ē  | 10 64 17 | 1 1 7 | Premethien       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|            | -                 | 09.     | S  | 0.77     | Ţ.    | Necdymium        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|            |                   | 95      | t  | 1400     | h.O.  | Presconneium     | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| R          | 1                 | ×200    | 3  | 1707     | 1.0.1 | - Figure 1       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Lanthanide | t                 | <u></u> | 3  | 1380     | )     | Lanthanan        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|            |                   |         |    |          |       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |

|           | 255<br>[1.952]                    |  |
|-----------|-----------------------------------|--|
|           | 101<br>Md<br>[258.1]              |  |
|           | 180<br>Final<br>[257.1]           |  |
|           | 88<br>[252.1]                     |  |
|           | 75 CF (251.1)                     |  |
|           | 97<br>BR<br>[247.1]               |  |
|           | 98<br>[247.1]                     |  |
|           | 95<br>Am<br>[243.1]<br>American   |  |
|           | 94<br>Pu<br>[244.1]<br>Plucaim    |  |
|           | 93<br>ND<br>[237.0]<br>Naptariun  |  |
|           | 92<br>U<br>238.0<br>Uzarien       |  |
|           | 91<br>Pa<br>231.0<br>Protectitism |  |
|           | 232.0<br>Uparium                  |  |
| Actinides | 89<br>Ac<br>[227.0]<br>Actinism   |  |

Where the atomic weight is not known. The relative atomic mass of the most common radicactive isotope is shown in that kets. The atomic weights of No and To are given for the isotopes  $^{27}$ Np and  $^{97}$ L.