SYDNEY GRAMMAR SCHOOL

2004 FORM VI TRIAL HSC EXAMINATION

Chemistry

General Instructions

- Working time 3 hours
- Board-approved calculators may be used
- Write using blue or black pen
- Draw diagrams using pencil
- A Data Sheet and Periodic Table are provided at the back of this paper
- Write your student number at the top of pages 7, 11, 15 and 19

Total marks (100)

Section I Pages 2 - 20

This section has two parts, Part A and Part B

Part A

Total marks (15)

- Attempt Questions 1 15
- Allow about 30 minutes for this Part

Part B

Total marks (69)

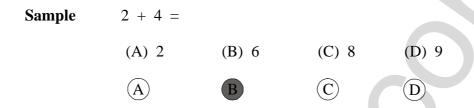
- Attempt Questions 16 29
- Allow about 2 hours for this Part

Section II Pages 21 - 28

Total marks (16)

- Attempt ONE Question from Questions 30 -34
- Allow about 30 minutes for this Section

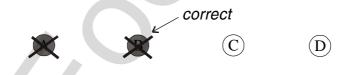
CHECKLIST	
Each boy should have the following	::
1 Question Paper	
1 Multiple Choice Answer Sheet	
1 4-page Writing Booklet	

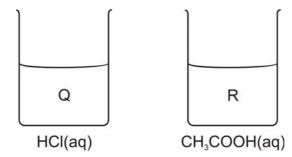

1 - MMB	2 - AKBB	3 - JAG	
4 - AKBB	5 - PRT	6 - JAG	7 - EPC

Part A

Total marks (15) Attempt ALL Questions Allow about 30 minutes for this Part

Use the multiple-choice Answer Sheet.


Select the alternative A, B, C or D that best answers the question. Fill the response circle completely.


If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.

If you change your mind and have crossed out what you consider to be the correct answer, then indicate this by writing the word *correct* and drawing an arrow as follows.

1

Solution Q is a solution of hydrochloric acid (pH = 2.5), while solution R is a solution of acetic (ethanoic) acid (pH = 2.5).

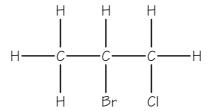
Based on the above information and your knowledge of acids, which of the following statements is correct?

- (A) Solution R is stronger than solution Q.
- (B) Solution R is more concentrated than solution Q.
- (C) Solution Q is more concentrated than solution R.
- (D) Solution Q contains more H⁺(aq) than solution R.
- Which of the following statements about ozone is valid?
 - (A) Ozone depletion occurs only in the atmosphere above the South Pole.
 - (B) Ozone is a vital gas in the stratosphere.
 - (C) Ozone is a linear molecule.
 - (D) Ozone is destroyed only by chlorofluorocarbons.
- Which of the following types of radiation is the most penetrating?
 - (A) α
 - (B) β
 - (C) γ
 - (D) ${}_{0}^{1}$ n
- 4 At what point is equilibrium reached in a reversible reaction?
 - (A) When reactants stop changing into products.
 - (B) When the molar concentrations of reactants and products are constant.
 - (C) When the molar concentrations of reactants and products are equal.
 - (D) When the activation energy of the forward and backward reactions are the same.

- A boy wished to classify lemon juice according to its acid/base characteristics. To do this he diluted some lemon juice and then added three drops of bromothymol blue. What colour would you expect this indicator to be in dilute lemon juice?
 - (A) Red
 - (B) Yellow
 - (C) Blue
 - (D) Colourless
- Which of the following is the most common anode in commercial primary galvanic cells?
 - (A) Zinc
 - (B) Mercury(II) oxide
 - (C) Manganese dioxide
 - (D) Lead
- Which of the following pairs of aqueous solutions will produce a precipitate on mixing?
 - (A) Sodium chloride and potassium nitrate
 - (B) Lead(II) chloride and potassium nitrate
 - (C) Potassium carbonate and barium nitrate
 - (D) Copper(II) sulphate and sodium chloride
- **8** What is the common name for 2-hydroxypropane-1,2,3-tricarboxylic acid?
 - (A) Acetic acid
 - (B) Hydrochloric acid
 - (C) Sulphuric acid
 - (D) Citric acid

9 Consider the following data:

Half-reaction	$\mathbf{E^{\circ}_{red}}$ / \mathbf{V}
$W^{+} + e^{-} \rightarrow W$	2.3
$X^{3+} + e^{-} \rightarrow X^{2+}$	0.7
$Y^{2+} + 2e^{-} \rightarrow Y$	-0.7
$Z^{2+} + 2e^{-} \rightarrow Z$	-1.7


Using the data above, which of the following is the best reducing agent?

- (A) W
- (B) W^{+}
- (C) Z^{2+}
- (D) Z
- Which of the following needs to be monitored by industrial chemists working in coal-fired power stations?
 - (A) Electricity generated by the station.
 - (B) Rate of formation of ammonia from its elements.
 - (C) Emission of steam and carbon dioxide.
 - (D) Emission of carbon monoxide and sulphur dioxide.
- Which of the following will affect the amount of hydrogen iodide gas present at equilibrium in this reaction?

$$H_2(g) + I_2(g) \Longrightarrow 2HI(g)$$

- (A) Adding a catalyst.
- (B) Adding an inert gas.
- (C) Increasing the pressure.
- (D) Increasing the temperature.
- Which of the following is the most commercially significant addition polymer?
 - (A) Nylon
 - (B) PVC
 - (C) PET
 - (D) Starch

- Which of the following statements about neutralization is correct?
 - (A) Neutralization is an electron transfer and is endothermic.
 - (B) Neutralization is an electron transfer and is exothermic.
 - (C) Neutralization is a proton transfer and is endothermic.
 - (D) Neutralization is a proton transfer and is exothermic.
- What is the IUPAC name of the following compound?

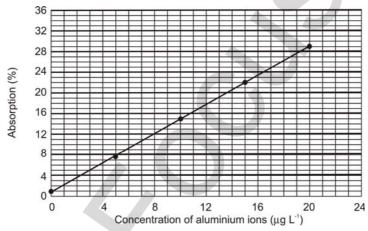
- (A) 2-bromo-3-chloropropane
- (B) 1-chloro-2-bromopropane
- (C) 2-bromo-1-chloropropane
- (D) 2-chloro-2-bromopropane
- In the nuclear transformation below, what is X?

$$^{10}_{5}B + \alpha \rightarrow ^{13}_{7}N + X$$

- (A) An electron
- (B) A proton
- (C) A neutron
- (D) A positron

					(Class	S	
Student Number								

Part B
Total marks (69)
Attempt ALL Questions
Allow about 2 hours for this Part


Answer the questions in the spaces provided Show all relevant working in questions involving calculations

Marks

Question 16 (2 marks)

Atomic absorption spectroscopy (AAS) can be used as an analytical tool for finding the concentration of elements in the ppm range. The graph below shows the relationship of absorption against concentration of aluminium ions.

2

Use this graph to determine the Al^{3+} concentration in ppm for a sample which registered an absorption of 10%.

Questic	on 17 (6 marks)	Marks
	uation $N_2(g) + 3H_2(g) \Longrightarrow 2NH_3(g)$ represents the synthesis of ammonia s component gases and is known as the Haber process.	
(a)	Describe the geo-political conditions under which Haber developed the industrial synthesis of ammonia and evaluate its significance at this time in world history.	3
(b)	Explain why the Haber process is based on a delicate balancing act involving reaction energy, reaction rate and equilibrium.	3

Quest	ion 18 (5 marks)	Marks
	c absorption spectroscopy (AAS) is an extremely useful tool in the detection of ion concentrations.	
(a)	Explain why AAS is of little use in identifying unknown substances.	3
(b)	Explain how AAS has had a major impact on the scientific understanding of the effects of trace elements.	2
	,	

Questi	ion 19 (6 marks)	Marks
	rmentation of glucose is a chemical process which has been known to humans east 5 thousand years.	
(a)	Write a chemical equation to represent the fermentation of glucose.	2
(b)	Under what physical conditions is fermentation optimised?	1
(c)	One of the products of the fermentation process is frequently used as a solvent for both polar and non-polar solutes. Account for ethanol's ability to do this.	3

Section I – Part B (continued)

					(Class	S	
Student Number								

Marks

Question 20 (5 marks)

Fossil fuels, which at present make up the bulk of the raw material used in the plastics industry, are a finite resource and likely to become severely depleted in the near future. Biopolymers have been suggested as a possible replacement for the petrochemicals produced from fossil fuels.

	uce biopolymers. Describe the structure of cellulose.	2
(i)	Identify a biopolymer which has recently been developed or is in the process of being developed, for commercial use.	1
(ii)	Name the specific enzyme or organism used to synthesise this biopolymer.	1
•••••		
		1
	(i) (ii) Sugg	(i) Identify a biopolymer which has recently been developed or is in the process of being developed, for commercial use. (ii) Name the specific enzyme or organism used to synthesise this biopolymer. Suggest one benefit (apart from their renewability), of using biomass to produce polymers.

		Marks
Questi	ion 21 (3 marks)	
(a)	Draw electron dot diagrams to show:	
	(i) an oxygen molecule.	1
	(ii) an ozone molecule.	1
(b)	State the difference in stability of ozone gas and oxygen gas.	1

Questic	on 22 (3 marks)	Marks
Esters a	are produced by reaction of an alkanoic acid and an alcohol.	
(a)	Name a straight-chained alkanoic acid.	1
(b)	Name a primary alcohol.	1
(c)	Name the ester that would be produced by refluxing this acid with this alcohol.	1

	Marks
Question 23 (7 marks)	
Over time, the definitions of acids and bases have been refined. Using the historical development of ideas about acids, evaluate how advances in scientific understanding changed the direction of scientific thinking.	7

Section I – Part B (continued)

					(Class	S	
Student Number								

Marks

Question 24 (5 marks)

A student was investigating the acid/base nature of salts, by adding the dry solid salts one at a time to water and then testing their pH.

When he did this with ammonium chloride, he noted that the pH < 7, and assumed that the following action had occurred.

$$NH_4^+(aq) + H_2O(l) \Longrightarrow NH_3(aq) + H_3O^+$$

(a)	Why does the above equation illustrate a Brönsted-Lowry acid, rather than an Arrhenius acid?	2
(b)	From the above equation, give one example of an acid and its conjugate base, respectively.	1
(c)	Briefly outline how you would perform a first-hand investigation to determine the concentration of an acidic substance using a computer-based technology.	2

Questic	on 25 (3 marks)	Marks
(a)	Identify two metallic ions which are found in hard water.	1
(b)	Describe a simple method of determining the hardness of water in a school laboratory.	2

Quest	ion 26	(6 marks)	Marks
		ally think of the air around us as neutral, the atmosphere naturally ic oxides of carbon, nitrogen and sulfur.	
(a)	(i)	Describe, using an equation, an example of a chemical reaction which releases sulfur dioxide.	2
	(ii)	Identify a natural source of sulfur dioxide.	1
(b)	(i)	Describe, using an equation, an example of a chemical reaction which releases an oxide of nitrogen.	2
	•••••		
	(ii)	Identify a natural source of nitric oxide (NO), a gas that is capable of destroying ozone, and is involved in the production of photochemical smog.	1

Section I – Part B (continued)

					(Class	S	
Student Number								

Marks **Question 27** (4 marks) Discuss the conditions under which nuclei are stable. 2 (a) The two equations below represent the formation of significant artificial (b) 2 isotopes: $^{98}_{42}\text{Mo} + ^{1}_{0}\text{n} \rightarrow ^{99}_{42}\text{Mo} \rightarrow ^{99}_{43}\text{Tc} + ^{0}_{-1}\beta$ ${}_{7}^{14}N + {}_{1}^{1}H \rightarrow {}_{6}^{11}C + {}_{2}^{4}He$ Tc-99 is the most widely used radioactive isotope for diagnostic studies in nuclear medicine. C-11 is incorporated into organic compounds and used as a tracer in positron emission tomography (PET). Discuss the production of commercial isotopes using these and / or other relevant examples.

Marks

3

Question 28 (6 marks)

Galvanic cells were constructed using the metals A - E and the voltages measured under standard conditions. The results are shown in the table below.

Cell reaction	$\mathbf{E^{\circ}_{cell}}$ / \mathbf{V}
$A \ + \ B^{2+} \ \rightarrow \ A^{2+} \ + \ B$	0.98
$B + D^{2+} \rightarrow B^{2+} + D$	1.05
$2C + B^{2+} \rightarrow 2C^{+} + B$	1.68
$B + B^{2+} \rightarrow B^{2+} + B$	0.00
$B + E^{2+} \rightarrow B^{2+} + E$	0.66

(a) Draw a labelled diagram of one of the cells used and identify clearly the reference cell.

(b) Explain what is meant by standard conditions. 1

Question 28 continued on page 21

Questio	on 28 (continued)	Marks
(c)	Cons	struct a table of standard (half-cell) potentials from the data collected.	1
(d)	(i) 	Identify the best reducing agent.	1
	(ii) 	Identify the best oxidising agent.	

Overtie	on 29 (8 marks)	Marks
Questio	on 29 (8 marks)	
	ylene is a chemical which has been of significant commercial importance in fifty years.	
(a)	Outline the major steps in the industrial production of polyethylene, from the raw material used, to the finished product.	3
(b)	Many commercial polymers are produced by the modification of ethene molecules, such that a hydrogen is replaced by a side group, followed by a polymerisation reaction.	
	(i) Identify one such "modified ethene" monomer, either by its common or systematic name, and using complete structural formula, write an equation to represent the polymerisation reaction, using three monomer units.	3

Question 29 continued on page 23

Questio	n 29 (c	continued)	Marks
	(ii)	Describe a use for the polymer you have identified, in part (i), in terms of its physical or chemical properties.	2
	•••••		

Section II

Total marks (16) Attempt ONE question from Questions 30 - 33 Allow about 30 minutes for this Section

Answer the question in a writing booklet. Extra writing booklets are available. Show all relevant working in questions involving calculations.

		Pages
Question 30	Industrial Chemistry	27
Question 31	Shipwrecks and Salvage	
Question 32	Biochemistry of Movement	
Question 33	Chemistry of Art	28-29

Marks

1

1

3

4

Question 30 - Industrial Chemistry (16 marks)

- (a) Industrial chemists have researched and developed replacements for some natural products.
 - (i) Identify one dwindling natural resource that is not a fossil fuel.
 - (ii) Name a material that has been manufactured to replace the natural product identified in part (i).
 - (iii) Explain why this replacement material is now manufactured. 1
- (b) (i) Describe the use of sulphuric acid as a dehydrating agent. 1
 - (ii) Explain how sulphuric acid may be used as an oxidant. 2
- (c) Phosgene, or carbonyl chloride, COCl₂, is a colourless, poisonous gas used in the production of some polymers. Carbonyl chloride decomposes as shown in the following equation.

$$COCl_2(g) \iff CO(g) + Cl_2(g)$$

1.00 mol of carbonyl chloride was placed in a 10.0 L sealed flask at 1250°C. At equilibrium 0.20 mol of carbonyl chloride was present in the flask. Calculate the value of the equilibrium constant for the decomposition of carbonyl chloride at 1250°C.

- (d) Chemistry laboratories buy 18M (concentrated) sulphuric acid and dilute this so that they are able to make the concentrations needed for day-to-day analysis.
 - Explain how you would **safely** dilute 18M sulphuric acid to make 2M sulphuric acid. Include safety precautions.
- (e) Sulfuric acid is such an important chemical in industry that its annual production may be used as an index of a nation's industrial activity.

Explain why sulphuric acid is such an important industrial chemical using three different industrial uses of sulphuric acid.

End of Question 30

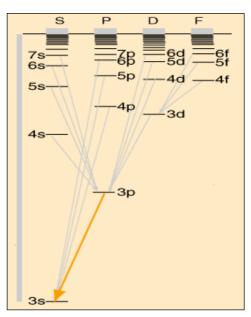
Marks

Question 33 - Chemistry of Art (16 marks)

(a) Modern cosmetics are carefully formulated to be beneficial to the skin, or at least not harmful, but this was not always the case. Some of the pigments used in ancient Egyptian, Greek and Roman make-up are given below.

Face make-up	White lead	2PbCO ₃ .Pb(OH) ₂
Lipstick	Cinnabar	HgS
Eye-shadow	Orpiment	As_2S_3
Mascara	stibnite	Sb ₂ S ₃

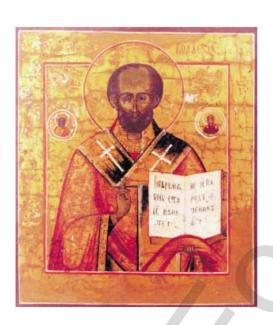
(i) What is the modern systematic name for orpiment?

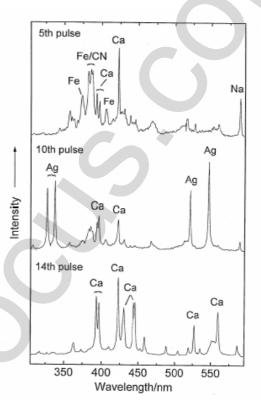

- 1
- (ii) What are some of the safety hazards associated with these pigments?
- 2

(b) (i) Identify the components of a paint.

- 1
- (ii) Outline the processes and chemistry involved to prepare and attach pigments to surfaces in a named example of a medieval or earlier artwork.
- 2
- (c) Explain the relationship between UV/visible absorption and reflectance spectra.
- 3
- (d) Explain the main features of atomic absorption and emission spectra, making reference to the energy level diagrams for sodium and hydrogen (see below).

Question 33 continues on page 29


Marks


Question 33 (continued)

(e) In laser microspectral analysis (LMA) a high energy laser pulse vaporises a minute amount of the material. Consecutive pulses dig deeper and deeper into the artwork, so that depth profiling is possible. The technique is very sensitive, using samples as small as 10⁻⁷ g. It may also be coupled with other techniques that can identify the individual pigments.

4

Russian icon of St Nicholas

The results of one LMA experiment on a nineteenth century Russian icon are shown above. A brown pigment in the paint is separated from the white ground by a metallic layer; the backing is wood.

Analyse the results and suggest compositions for the components of the three layers. Justify your answer.

End of Question 33

Chemistry

Data Sheet

Avogadro's constant, N _A		$6.022 \text{ x} 10^{23} \text{ mol}^{-1}$
Volume of 1 mole ideal gas:	at 100 kPa and	
	at 0 °C (273 K)	22.71L
	at 25 °C (298K)	24.79 L
Ionisation constant for water	at 25°C (298.15 K), K _w	1.0×10^{-14}
Specific heat capacity of wat	er	$4.18 \times 10^3 \mathrm{Jkg^{-1}K^{-1}}$

Some useful formulae

$$pH = -\log_{10}[H^{+}] \qquad \Delta H = -mC\Delta T$$

Standard Potentials

$K^+ + e^-$	\rightleftharpoons	$K_{(s)}$	–2.94 V
$Ba^{2+} + 2e^{-}$	\rightleftharpoons	$Ba_{(s)}$	−2.91 V
$Ca^{2+} + 2e^{-}$	⇌ .	$Ca_{(s)}$	−2.87 V
$Na^+ + e^-$	⇌	$Na_{(s)}$	−2.71 V
$Mg^{2+} + 2e^{-}$	\rightleftharpoons	$Mg_{(s)}$	–2.36 V
$Al^{3+} + 3e^{-}$	⇌	$Al_{(s)}$	−1.68 V
$Mn^{2+} + 2e^{-}$	=	$Mn_{(s)}$	−1.18 V
$H_2O + e^-$	=	$\frac{1}{2}$ $H_{2(g)} + OH^-$	–0.83 V
$Zn^{2+} + 2e^{-}$		$Zn_{(s)}$	–0.76 V
$Fe^{2+} + 2e^{-}$	₩ ₩ ₩	$Fe_{(s)}$	–0.44 V
$Ni^{2+} + 2e^{-}$		$Ni_{(s)}$	–0.24 V
$\mathrm{Sn}^{2+} + 2\mathrm{e}^{-}$	\rightleftharpoons	$Sn_{(s)}$	–0.14 V
$Pb^{2+} + 2e^{-}$		$Pb_{(s)}$	–0.13 V
$H^+ + e^-$	——————————————————————————————————————	½ H _{2(g)}	0.00 V
$SO_4^{2-} + 4H^+ + 2e^-$	=	$SO_{2(g)} + 2H_2O$	0.16 V
$Cu^{2+} + 2e^{-}$	-	$Cu_{(s)}$	0.34 V
$\frac{1}{2}O_{2(g)} + H_2O + 2e^-$	=	2OH ⁻	0.40 V
$Cu^+ + e^-$	₩	$Cu_{(s)}$	0.52 V
$\frac{1}{2} I_{2(s)} + e^{-}$	=	I ⁻	0.54 V
$\frac{1}{2}I_{2(aq)} + e^{-}$	===	I ⁻	0.62 V
$Fe^{3+} + e^{-}$	\rightleftharpoons	Fe ²⁺	0.77 V
$Ag^+ + e^-$	===	$Ag_{(s)}$	0.80 V
$^{1}/_{2} Br_{2(1)} + e^{-}$	\rightleftharpoons	Br ⁻	1.08 V
$^{1/2} Br_{2(aq)} + e^{-}$	\rightleftharpoons	Br ⁻	1.10 V
$^{1}/_{2} O_{2} + 2H^{+} + 2e^{-}$	\rightleftharpoons	H_2O	1.23 V
$^{1/2}$ $Cr_{2}O_{7}^{2-} + 7H^{+} + 3e^{-}$	\rightleftharpoons	$Cr^{3+} + \frac{7}{2} H_2O$	1.36 V
$^{1/2}$ Cl _{2(g)} + e ⁻	\rightleftharpoons	Cl ⁻	1.36 V
$\frac{1}{2} \text{Cl}_{2(aq)} + e^{-}$	\rightleftharpoons	Cl ⁻	1.40 V
$MnO_4^- + 8H^+ + 5e^-$	==	$Mn^{2+} + 4H_2O$	1.51 V
$\frac{1}{2} F_{2(g)} + e^{-}$	===	F-	2.89 V

	2 He	4.003	пенин	S-2	20.18	Neon	18	39.95	Argon	36 Kr	83.80	Krypton	54 Xe	131.3	Xenon	86 Rn	222.0	Radon	118 Uuo		Ununcetium
				QЩ	19.00	Fluorine	17 C1	35.45	Chlorine	35 Br	79.90	Bromine	53	126.9	Iodine	85 At	[210.0]	Astatine	117		
				жO	16.00	Oxygen	91	32.07	Sulfur	34 Se	78.96	Selenium	52 T	127.6	Tellurium	84 Po	[210.0]	Polonium	116 Uuh		Ununhexium
				ΓZ	14.01	Nitrogen	15 p	30.97	Phosphorus	33 As	74.92	Arsenic	45 15	121.8	Antimony	83 B;	209.0	Bismuth	115		
				ون ن	12.01	Carbon	14 51	28.09	Silicon	32 Ge	72.61	Germanium	05 05	118.7	Tin	82 Ph	207.2	Lead	114 Uuq		Ununquadium
				B	10.81	Вогоп	EI 13	26.98	Aluminium	31 Ga	69.72	Gallium	67 In	114.8	Indium	18	204.4	Thallium	113		
S.Z.										uZ θE	65.39	Zinc	48 Cd	112.4	Cadmium	9Н 08	200.6	Mercury	112 Uub	Ī	Ununbium
FILEMENTS				ment		ent				29 Cu	63.55	Copper	47	107.9	Silver	6L	197.0	Cold	unn Uun	1	Unununium
OF THE				Symbol of element	100	Name of element				28 N:8	58.69	Nickel	46 Pd	106.4	Palladium	78 Pt	195.1	Platinum	110 Uun	I	Ununnilium
ABLE C		KEY		79 Au	197.0	Gold				27 Co	58.93	Cobalt	45 Rh	102.9	Rhodium	77	192.2	Indium	109 Mt	[368]	Meitnenum
PERIODIC TABLE				Atomic Number	Atomic Weight					26 Fe	55.85	Iron	44 P.:	101.1	Ruthenium	9 <u>7</u>	190.2	Osmium	108 Hs	[265.1]	Hassium
PERIC				<	*					25 Mn	54.94	Manganese	43 T.	[198.91]	Technetium	75	186.2	Rhenium	107 Bh	[264.1]	Bohrium
										74 Cr	52.00	Chromium	42 Mo	95.94	Molybdenum	74 W	183.8	Tungsten	106 Sg	[263.1]	Seaborgium
										23 V	50.94	Vanadium	4 Z	92.91	Niobium	73 T3	180.9	Tantalum	105 Db	[262.1]	Dubnium
										22 Ti	47.87	Titanium	40 7r	91.22	Zirconium	72 Hf	178.5	Hafnium	104 Rf	[261.1]	Rutherfordium
		(/				21 Sc	44.96	Scandium	39 V	16.88	Yttnium	57–71		Lanthanides	89–103		Actinides
				Be Be	9.012	Beryllium	12 Mg	24.31	Magnesium	20 Ca	40.08	Calcium	38	87.62	Strontium	56 B3	137.3	Barium	88 Ra	[226.0]	Radium
	-н	1.008	nydrogen	Ľγ	6.941	Lithium	Ξž	22.99	Sodium	19 K	39.10	Potassium	37 Rh	85.47	Rubidium	55	132.9	Caesium	87 Fr	[223.0]	Francium

Lanthanide	ses													The state of the s
27	28	59	09	19	62	63	5	65	99	67	89	69	70	71
La	ce	Pr	PZ	Pm	Sm	E	PS	TP	Dy	Ho	臣	Tm	Yb	Γn
138.9	140.1	140.9	144.2	[146.9]	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
Lanthanum	Cenium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
Actinides														
89	81	91 Ps	92	93 N	94 P.,	95 Am	96	97 BE	86 Ct	99 Es	100 Fm	101 MA	102 No.	103
[227.0]	232.0	231.0	238.0	[237.0]	[239.1]	[241.1]	[244.1]	[249.1]		[252.1]		[258.1]		[262.1]
Antinima	Thomas	Descharing	Time	Nominmi	Distantinum	· · · · · · · · · · · · · · · · · · ·	0	Donlestin		Timedanian		Mondalanina		T amount of

Where the atomic weight is not known, the relative atomic mass of the most common radioactive isotope is shown in brackets. The atomic weights of Np and Tc are given for the isotopes 237 Np and 99 Tc.