Number:	
---------	--

Pymble Ladies' College Chemistry

2002

Trial Examination

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Board-approved calculators may be used
- Write using black or blue pen
- Draw diagrams using pencil

Section I

Total marks (71)

This section has two parts, Part A and Part B

Part A

Multiple choice

Total marks (15)

- Attempt Questions 1–15
- Allow about 30 minutes for this part

Part B

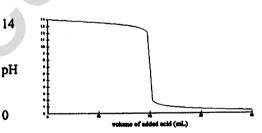
Extended Answers Total marks (56)

- Attempt Questions 16–27
- Allow about 1 hour and 35 minutes for this part

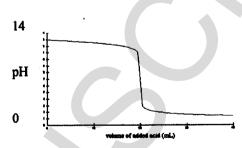
Section II

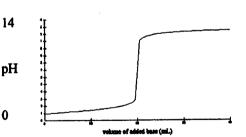
Total marks (29)

- Attempt ONE question Question 28
- Allow about 55 minutes for this section


Section I – Part A

- 1. Which of the following would be the best method to obtain a standard solution of hydrochloric acid?
 - A. Weigh out 3.65 g of concentrated hydrochloric acid and dissolve this in 1 litre of distilled
 - B. Measure exactly 3.65 mL of concentrated hydrochloric acid and make it up to 1 litre with distilled water.
 - C. Titrate any hydrochloric acid solution against a base solution whose concentration is known accurately.
 - D. Dissolve a known volume of hydrogen chloride in a known volume of water.
- 2. What is the pH of a solution made by diluting 10 mL of a hydrochloric acid solution with pH of 1 to 100mL?
 - A. 0
 - B. 1
 - C. 2
 - D. 13
- 3. A pH meter is used to measure the pH of 100mL of a 1.0M solution of a strong base to which a 1.0M solution of a strong acid is added. Which of the following graphs represents this process?


Α 14


B.

C.

D

- 4. Which of the following has the lowest pH?
 - A. 0.5 M NaOH
 - B. 0.1 M KOH
 - C. 0.1 M HCl
 - D. 0.5 M HNO₃

Number	

5. In which list do all species act as Bronsted-Lowry acids?

- A. NH₂, H₂O, NO₃
- B. H₂O, HCO₃, HPO₄
- C. H₂PO4⁻, SO₄²⁻, OH⁻
- D. NO₂, OH, CH₃COO

6. The compound below which would not be a suitable monomer for making an addition polymer is

- A. CH₂=CH-CN
- B. CF₂=CF₂
- C. CHCl=CHCl
- D. HOOC-CH₂-CH₂NH₂

7. Identify the product formed when 2-hexene is mixed with Bromine

- A. bromohexane
- B. 2-bromohexane
- C. 2,3-dibromohexane
- D. 2,2-dibromohexane

8. Consider the following reaction

$$5\Gamma + 10_3^- + 6H^+ \longrightarrow 3l_2 + 3H_2O$$

The oxidant and the reductant in the above reaction respectively are

- A. I and IO₃
- B. H^+ and Γ
- C. IO_3 and Γ
- D. I₂ and IO₃

9. In the following nuclear equation

$$^{222}_{86}$$
Rn \longrightarrow $^{4}_{2}$ He + $^{Z}_{Y}$ X

- A. z=218 and y=88
- B. z=218 and y=84
- C. z=226 and y=84
- D. z=226 and y=86

10. PVC is an example of an addition polymer. The common name and the systematic name for the monomer from which this polymer is formed are

- A. polyvinyl chloride and chloroethane
- B. vinyl chloride and chloroethene
- C. vinyl chloride and 1,2-dichloroethene
- D. vinyl chloride and 2-dichloroethane

Number			
Jumber			
1 ULLIDOL		 	

- 11. Which of the following gives the major use of ammonia?
 - A. the synthesis of cleaning solutions
 - B. the synthesis of explosives
 - C. the manufacture of nylon and acrylonitrile
 - D. the synthesis of fertilisers
- 12. The catalyst used in the Haber process is:
 - A. Osmium
 - B. Activated Iron
 - C. Zeolite
 - D. Concentrated sulfuric acid
- 13. You have been given a solution believed to contain barium ions (Ba2+). Which of the following tests would be the most useful in identifying this cation?
 - A. Addition of sodium carbonate solution, Na₂CO₃
 - B. Addition of sodium chloride solution, NaCl
 - C. Performing a flame test
 - D. Addition of nitric acid, HNO₃
- 14. During the tests for biochemical oxygen demand (BOD), a sample of water is kept in the dark for five days before being tested for its dissolved oxygen level.

What is the purpose of keeping the sample in the dark?

- A. To prevent photosynthesis occurring and adding oxygen to the water
- B. To prevent photosynthesis occurring and removing oxygen from the water
- C. To prevent respiration occurring and adding oxygen to the water
- D. To prevent respiration occurring and removing oxygen from the water
- 15. You have been given a solution of CuSO₄ and a solution of FeSO₄. Which of the following tests would be the most useful in distinguishing between the two solutions?
 - A. Addition of silver nitrate solution, AgNO₃
 - B. Addition of barium nitrate solution, Ba(NO₃)₂
 - C. Addition of ammonium hydroxide, NH₄OH
 - D. Addition of potassium iodide, KI

Number	
AMITINCI	

Section I - Part B

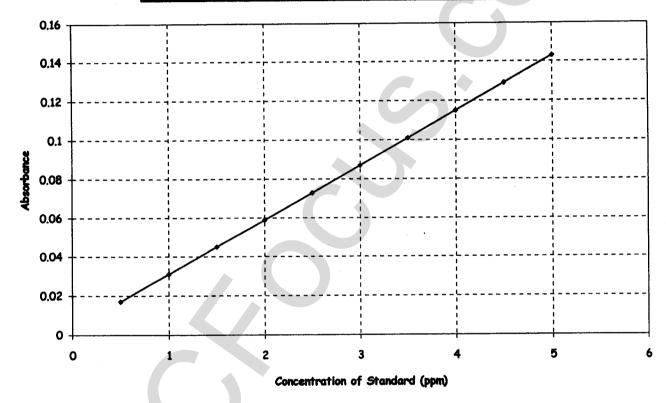
Total marks (56) Attempt questions $16-27$ Allow about 1 hour and 35 minutes for this part
Answer the questions in the spaces provided
Question 16 (2 marks) Sodium cyanide NaCN gives a basic solution when dissolved in water. This is due to the hydrolysi of the salt.
a) Use a chemical equation to show why this solution is basic.
b) Write the formula of the conjugate acid of the cyanide ion.
1
Question 17 (5 marks) a) Calculate the volume of 6M hydrochloric acid (HCl) which would be needed to neutralise a spin of 1 kg of sodium hydroxide (NaOH) pellets.
b) Assess the use of 6M acid to neutralise the sodium hydroxide spill.
3

Question 18 (6 marks) a) An esterification reaction is carried out using propanol and ethanoic a in the reaction.	acid. Name the ester formed
b) Explain why refluxing is necessary to produce an ester.	1
	2
c) After refluxing, it is necessary to purify an ester by distillation. If the acid and ethanol, identify which of these impurities would boil at a lo off first. Explain your answer.	reactants were ethanoic
Question 19 (5 marks) A student was asked to determine the Heat of Neutralisation of a 1.0 M 1.0 M solution of potassium hydroxide.	3 solution of nitric acid with a
a) Outline the procedure used to do this experiment.	
	144 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
	2

Number

b) Calculate the Heat of Neutralisation for this reaction, if the following data was obtained when 100mL of both the acid and the base are used.	
Initial temperature of the base and acid = 17.0° C Final temperature of reaction mixture = 22.9° C	
Specific Heat capacity of water = $4.2 \text{ JK}^{-1}\text{g}^{-1}$	
2	
c) The theoretical value for neutralisation of a strong acid with a strong base is 55kJ mol ⁻¹ . Ident the main error which may have occurred in this experiment to explain the difference in the experimental result.	tify
Question 20 (4 marks) Water collected from a lake located near an industrial town was found to be acidic. The air in the area is polluted with sulfur dioxide.	his
a) Identify a possible source of the air pollutant.	
1	
b) Explain the acidity of the lake water using equations.	
c) Evaluate reasons for concern about the release of oxides of sulfur and nitrogen into the environment.	

Number


	2
uestion 21. (8 marks) odern cars run on petrol. One common ingredient in this petrol is 3,4-dimethyl-1-penter hanol is currently being used to supplement the use of petrol in cars. Ethanol is produce rmentation of sugars. It is thus classed as a renewable resource.	ne. ed by the
Draw a structural formula for 3,4-dimethyl-1-pentene	
Identify the conditions under which ethanol is produced from the fermentation of glucos	1 se.
James, and comment and the second production of the second production o	
	2
	· · ·
	5

		Number	
Question 22 (7 The shorthand diagram	' marks) for a particular galvanic (cell is	
$Ag, Ag^+ \Gamma, I_2 Pt$			
	on of the galvanic cell a	bove by drawing a fully labelled dia	agram
-,			
b) Identify the direction	n of electron flow	Co	4
			1
c) Describe what is hap	opening in this cell in ter	ms of oxidation and reduction	
			2
Ov Al 02			
Question 23	(4 marks)		
a) Identify one radioise	otope used in medicine.		
			1
			1
b) Describe how this r	adioisotope is used		
			2
c) Relate this to the ch	emical properties of the	radioisotope.	
			1

Question 24 (2 Marks)

AAS has been used to determine the concentration of cadmium ions in oysters that are being bred near an industrial waste outlet. The absorbance reading of the sample taken from the oysters was 0.075.

HEAVY METAL	(ppm wet weight)		
Mercury	0.4		
Cadmium	2,1		
Lead	2.3		
Copper	3.1		
Zinc	900		

(a) Use the data above to determine the concentration of cadmium ions in the oysters.

(b) Deduce whether the levels are cause for concern for seafood eaters.

1

1

	Number
O 0.00	tion 25 (5 Marks)
The s	ynthesis of ammonia from its constituent elements occurs industrially at a moderate erature of 500°C and a high pressure of 200atm.
	nate the use of these conditions
One	estion 26 (5 Marks)
Eutr	cophication of lakes and rivers leads to the poisoning of the waterway so that it is unsuitable for sumption by livestock and humans. High levels of various ions, such as phosphate ions, are onsible for this eutrophication.
(a)	Identify the main source of this anion.
(b)	The eutrophication of waterways is characterised by algal blooms. Describe the processes
(0)	that lead to the eutrophication of waterways.
-	

		Number		<u></u>
				4
				•
0 4 05	(2.16			
Question 27	(3 Marks)	1' 14	. 4	
	and sanitised before it is sup			1
Assess the effection townships and cite	veness of the addition of chlories.	orine to water during	g its treatment for supp	ly to
to whomps and on				
				÷
	**************************************		······································	······

	
Number_	

Section II

OPTION 2

SHIPWRECKS AND SALVAGE

Ouestion 28

Allow about 55 minutes for this section.

Total marks (29)

Answer the question on writing paper. Extra writing paper is available.

- a) Seawater contains an average of 35g of dissolved solids per kilogram of water. It also contains dissolved gases.
 - i) Identify the major sources of these salts in seawater.

3

- ii) Outline the factors that affect the solubility of carbon dioxide in seawater.
- b) Explain in terms of oxidation and reduction each of the following:
 - i) Zinc is a more useful coating for protecting iron nails than copper.

2

- ii) Rusting of steel bridges near the ocean occurs more readily than those inland over dry 2 creek beds.
- iii) Aluminium is known as a passivating metal.

1

c) Compare the composition, properties and uses of the two steels below:

Type of steel	Element alloying with iron.	Uses
tungsten	12-20% W 2-5% Cr 1-3% V	High speed cutting tools
silicon	2-5% Si	electromagnets, transformers

3

d) Compare an electrolytic and a galvanic cell giving an example of each.

A

e) A shipwreck "A" lies in the harbour at Broome in WA. Each day the tide recedes, exposing the whole ship to the atmosphere for several hours until the tide returns and submerges the wreck again. A second shipwreck "B" lies at a depth of 2000 metres in the Antarctic. Compare the corrosion that will occur in these two shipwrecks "A" and "B".

6

f) Salvaging artifacts from shipwrecks can be a costly and time-consuming process. With particular reference to metallic objects, outline the processes that could be used to restore these artefacts to their near-original state.