## **COMPLEX NUMBERS - WORKSHEET #3**

## Course/Level

NSW Secondary High School Year 12 HSC Mathematics Extension 2.

## **TOPIC**

Complex Numbers: Powers and roots of complex numbers. (Syllabus Ref: 2.4)

- 1. Prove by induction that  $(\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta)$  for all integers  $n \ge 1$ .
- 2. (i) Express  $\sqrt{3} + i$  in modulus-argument form.
  - (ii) Hence evaluate  $(\sqrt{3} + i)^6$ .
- 3. (i) Write  $\omega = \frac{1+i\sqrt{3}}{2}$  in polar (that is, modulus-argument) form.
  - (ii) Use De Moivre's Theorem to show that  $\omega^3 = -1$ .
  - (iii) Hence calculate  $\omega^{10}$ .
- 4. Evaluate  $(1+\sqrt{3}i)^{10}$  in the form x+iy.
- 5. (i) If  $z = 2\left(\sin\frac{\pi}{6} + i\cos\frac{\pi}{6}\right)$  evaluate  $z^6$ .
  - (ii) Plot, on an Argand diagram, all complex numbers that are solutions of  $z^6 = -64$ .
- 6. Express each of the following numbers in the form a+ib where a and b are real.

(i) 
$$\frac{(1+2i)^2 - (1-i)^3}{(3+2i)^3 - (2+i)^2}$$
 (ii) 
$$\frac{(1+i)^9}{(1-i)^7}$$
 (iii)  $\sqrt[4]{2-i\sqrt{12}}$ 

- (iv)  $\left(az^2 + bz\right)\left(bz^2 + az\right)$ , where  $z = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$  and a and b are real.
- 7. Let  $\theta$  be a real number and consider  $(\cos \theta + i \sin \theta)^3$ .
  - (a) Prove that  $\cos 3\theta = \cos^3 \theta 3\cos \theta \sin^2 \theta$ .
  - (b) Find a similar expression for  $\sin 3\theta$ .
- 8. Factorise  $z^5 + 1$  into real linear and quadratic factors. Hence or otherwise show that

$$\cos\frac{\pi}{5}\cos\frac{2\pi}{5} = \frac{1}{4},$$

$$\sin\frac{\pi}{5}\sin\frac{2\pi}{5} = \frac{\sqrt{5}}{4}$$

- 9. If  $\omega$  is a non-real root of the equation  $x^3 1 = 0$  then
  - (i) Show that  $\omega^2$  is also a root.
  - (ii) Deduce that  $1 + \omega + \omega^2 = 0$

- 10. (a) Solve the equation  $z^6 + 1 = 0$ , giving roots in the form a + ib. Show these roots on an Argand diagram.
  - (b) Factorise  $z^6 + 1$  into real quadratic factors.
- 11. Prove that

$$\sin\theta + \sin 2\theta + \dots + \sin n\theta = \frac{\sin\frac{n\theta}{2}\sin\frac{(n+1)\theta}{2}}{\sin\frac{\theta}{2}}$$

and

$$1 + \cos \theta + \cos 2\theta + \dots + \cos n\theta = \frac{\cos \frac{n\theta}{2} \sin \frac{(n+1)\theta}{2}}{\sin \frac{\theta}{2}}$$

- 12. (a) Write down the modulus-argument form of  $(1+i)^n$ .
  - (b) Expand  $(1+i)^n$  using the binomial theorem
  - (c) Using parts (a) and (b) show that

$$1 - \binom{n}{2} + \binom{n}{4} - \binom{n}{6} + \cdots = 2^{\frac{n}{2}} \cos \frac{n\pi}{2},$$

$$\binom{n}{1} - \binom{n}{3} + \binom{n}{5} - \binom{n}{7} + \dots = 2^{\frac{n}{2}} \sin \frac{n\pi}{2}.$$

- 13. (a) If  $z = r(\cos \theta + i \sin \theta)$  find an expression for  $z^n + z^{-n}$ .
  - (b) Expand  $(z^1 + z^{-1})^4$  and using the above result express your answer in the form  $A\cos 4\theta + B\cos 2\theta + C$ .
  - (c) Hence evaluate  $\int_0^{\frac{\pi}{2}} \cos^4 \theta d\theta$ .
- 14. (a) If  $\omega$  is the complex root of  $z^5 1 = 0$  with the smallest positive argument, show that  $\omega^2$ ,  $\omega^3$  and  $\omega^4$  are the other roots.
  - (b) Show that  $1 + \omega + \omega^2 + \omega^3 + \omega^4 = 0$ .
  - (c) The quadratic polynomial  $z^2 (\alpha + \beta)z + \alpha\beta = 0$  has roots  $\alpha$  and  $\beta$ . Use this fact to find the quadratic equation whose roots are  $\alpha = \omega + \omega^4$  and  $\beta = \omega^2 + \omega^3$ .