
Fisher’s 4 unit maths specimen papers
PAPER 1

Question 1

(a) Evaluate: (i)
∫ 1

0
dx

(x+1)(x+3) ; (ii)
∫ 1

0

√
(4 − x2) dx; (iii)

∫ 2

−1
x
√

2 − x dx

(b) Find
∫
x2e−x dx

(c) In In =
∫ π

2
0

sinn x dx, show that In = n−1
n In−2. Hence evaluate

∫ π
2

0
sin5 x dx.

Question 2

(a) Reduce the polynomial P (x) = x4 − 2x2 − 15 into irreducible factors over:
(i) the rational field Q; (ii) the real field R; (iii) the complex field C.

(b) Divide the polynomial (x3 +5ix2−7ix−3) by (x−2i) using long division.

(c) Show that 2 −
√

3 is a zero of the polynomial a(x) = x3 − 15x + 4. Hence
reduce a(x) to irreducible factors over the real field.

(d) Given that the polynomial P (x) = x4 + x2 + 6x + 4 has a rational zero of
multiplicity 2, find all the zeros of P (x) over the complex field.

(e) If α, β, γ are the roots of the equation x3 + qx+ r = 0 where r �= 0, obtain
as functions of q and r, in their simplest forms, the coefficients of the cubic
equation whose roots are 1

α2 ,
1

β2 ,
1
γ2 .

Question 3

(a) (i) Define the modulus |z| of a complex number z.
(ii) Given two complex numbers z1, z2, prove that |z1z2| = |z1||z2|.

(b) Given w = 2−3i
1−i , determine:

(i) |w| (the modulus of w); (ii) w (the conjugate of w); (iii) w + w.

(c) Describe, in geometric terms, the locus (in the Argand plane) represented
by 2|z| = z + z + 4.

Question 4

(a) Determine the real values of k for which the equation x2

19−k + y2

7−k = 1 defines
respectively an ellipse and a hyperbola. Sketch the curve corresponding to the
value k = 3. Describe how the shape of this curve changes as k increases from
3 towards 7. What is the limiting position of the curve as 7 is approached?
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(b) P is a point on the ellipse x2

a2 + y2

b2 = 1 with centre O. A line is drawn
through O, parallel to the tangent to the ellipse at P , meets the ellipse at Q
and R. Prove that the area of triangle PQR is independent of the position of
P .

Question 5

(a) Sketch the curve y2 = x2(x− 2)(x− 3).

(b) In the Cartesian plane sketch the curve y = ex−e−x

ex+e−x and prove that the
lines y = ±1 are asymptotes. Also, if k is a positive constant, find the area
in the positive quadrant enclosed by the above curve and the three lines y =
1, x = 0, x = k, and prove that this area is always less than ln 2, however large
k may be.

Question 6

(a) The area bounded by the curve y = 1
x+1 , the x-axis, the line x = 2, and the

line x = 8, is rotated about the y-axis. Find the volume of the solid generated
using the method of cylindrical shells.

(b) (i) Using substitution x=a sin θ, or otherwise, verify that
∫ a

0

√
a2 − x2 dx=

1
4πa

2

(ii) Deduce that the area enclosed by the ellipse x2

a2 + y2

b2 = 1 is πab.

(iii)

The diagram shows a mound of height H. At height h above the horizontal
base, the horizontal cross-section of the mound is elliptical in shape, with
equation x2

a2 + y2

b2 = λ2, where λ = 1− h2

H2 and x, y are appropriate coordinates
in the plane of the cross-section. Show that the volume of the mound is 8πabH

15 .

Question 7

(a) Six letters are chosen from the letters of the word AUSTRALIA. These
six letters are then placed alongside one another to form a six-letter arrange-
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ment. Find the number of distinct six-letter arrangements which are possible,
considering all the choices.

(b) Solve for x the following inequation: x2−5x
4−x ≤ −3. Show the solutions on

a number line.

(c)

In the figure, PAQ and BHK are straight lines. Prove that PH is parallel to
KQ.

(d) Two circles, centres B and C, touch externally at A. PQ is a direct
common tangent touching the circles at P and Q respectively.

(i) Draw a neat diagram depicting the given information.
(ii) Prove that the circle with BC as its diameter touches the line PQ.

Question 8

(a) An aeroplane flies horizontally due east at a constant speed of 240 km/h.
From a point P on the ground the bearing of the plane at one instant is
311◦T, and 3 minutes later the bearing of the plane is 073◦T, while its el-
evation then is 21◦. If h metres is the altitude of the plane, show that
h = 12000 sin 41◦ tan 21◦cosec58◦, and calculate h correct to the nearest metre.

(b) The magnitude and direction of the acceleration due to gravity at a point
uotside the Earth at a distance x from the Earth’s centre is equal to − k

x2 ,
where k is a constant.

(i) Neglecting atmospheric resistance, prove that if an object is projected up-
wards from the Earth’s surface with speed u, its speed v in any position is
given by v2 = u2 − 2gR2

(
1
R − 1

x

)
where R is the Earth’s radius and g is the

magnitude of the acceleration due to gravity at the Earth’s surface.

(ii) Show that the greatest height, H, above the Earth’s surface reached by the
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particle is given by H = u2R
2gR−u2 .

(iii) Hence, if the radius of the Earth is approximately 6400 km, and the ac-
celeration due to gravity at the Earth’s surface is 9 ·8 m/s2, find the speed
required by the particle to escape the Earth’s gravitational influence.
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PAPER 2

Question 1

Sketch the following curves on separate axes, showing all intercepts and turning
points:

(a) y = cos2 x (b) y = ln | cosx| (c) y = x3 − 4x

(d) y = (x3 − 4x)2 (e) y2 = x3 − 4x (f) y = |x|3 − 4|x|.

Question 2

(a) Given the complex number z = 7 − 3i, find:

(i) |z| (ii) z (iii) |z − z| (iv) arg(z − z).

(b) Express z =
√

2
1−i in modulus-argument form, and hence express z5 in the

form x + iy.

(c) K,L,M,N are the vertices of a square, in anticlockwise order. Given that
K and M represent the numbers 2 + i and 2 + 3i, find the coordinates of:

(i) L and N
(ii) M , if the square is rotated clockwise through an angle of 90◦ about the
origin.

(d) In the Argand plane, sketch the following:

(i) |z − 5 + 3i| = 5
(ii) |z2 − z 2| ≥ 4
(iii) arg z+1

z−1 = 0

Question 3

(a) Derive the equation of the tangent to the hyperbola x2

a2 − y2

b2 = 1 at the
point (x1, y1) and hence deduce that the equation of the chord of contact to
this hyperbola from an external point E(x0, y0) is xx0

a2 − yy0
b2 = 1. If the chord of

contact passes through a focus, show that E lies on a directrix, and determine
whether the chord subtents a right angle at E.

(b) Let C1 ≡ 3x2 + y2 − 1, C2 ≡ 2x2 + 5y2 − 1, and let λ be a real number.

(i) Show that C1 + λC2 = 0 is the equation of a curve passing through the
points of intersection of the ellipses C1 = 0 and C2 = 0.

(ii) Determine the values of λ for which C1 + λC2 = 0 is the equation of an
ellipse.

Question 4

Leaving your answer in exact form, evaluate:
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(a)
∫ 1

0
dx

x2+8x+4 (b)
∫ e

1
lnx3 dx (c)

∫ π
2

0
dx

sin x+1

(d)
∫ 2

0

√
5−x
5+x dx (e)

∫ 5

3
3 dx

2x3+x2−x .

Question 5

(a) Sketch the region, R, which is completely bounded by the curves y = sin 2x
and y = 1

2 in the domain 0 ≤ x ≤ π
2 . Find the volume generated when R is

rotated about the:

(i) x-axis (ii) y-axis (iii) line y = 1
2 .

(b) A solid shape has a triangular base with sides 17 cm, 17 cm and 16 cm.
Each cross-section (perpendicular to the axis of symmetry of the base) is in the
shape of a parabola, with its latus rectum lying in the base. Find the volume
of the solid.

Question 6

(a) The polynomial function P (x) = x4 − 4x3 − 3x2 + 50x− 52 has a zero at
x = 3 − 2i. Factorise P (x) over the field of:

(i) rationals
(ii) reals
(iii) complex numbers

(b) The diameter AB of a circle is produced to E. EC is a tangent touching
the circle at C, and the perpendicular to AE at E meets AC produced at D.
Show that �CDE is isosceles.

(c) Given that p, q, and r are positive, prove:

(i) p2q + pq2 + q2r + qr2 + r2p + rp2 ≥ 6pqr
(ii) (p + q)(q + r)(r + p) ≥ 8pqr
(iii)

(
1
p − 1

)(
1
q − 1

)(
1
r − 1

)
≥ 8 if also p + q + r = 1.

Question 7

(a) A sequence {un} is such that u1 = 3, u2 = 5 and un+2 = 4un+1 − 3un.
Prove by mathematical induction that un = 3n−1 + 2.

(b) If α, β and γ are angles of a triangle, prove cosα + cosβ + cos γ =
4 sin α

2 sin α
2 sin γ

2 + 1.

(c) How many different sums of money can be made up from six $20 notes,
two $5 notes, four $2 coins, seven $1 coins, three 50/c coins, and one 20/c coin?

(d) Five letters are chosen from the letters of the word AMERICA. These
five letters are then placed alongside one another to form a five-letter arrange-
ment. Find the number of distinct five-letter arrangements which are possible,
considering all the choices.
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Question 8

(a) (i) A particle of mass m is projected vertically downwards under gravity
in a medium whose resistance is equal to the velocity of the particle multiplied
by mg

V . Show that the velocity tends to the value V .

(ii) A particle is projected vertically upwards in the above medium with velocity
U . Show that it reaches a height UV

g + V 2

g loge

(
V

U+V

)
.

(b) A car takes a banked curve of a racing track at a speed V , the lateral
gradient angle θ being designed to reduce the tendency to side-slip to zero for
a lower speed U . Show that the coefficient of friction necessary to prevent
side-slip for the greater speed V must be at least (V 2−U2) sin θ cos θ

V 2 sin2 θ+U2 cos2 θ
.
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PAPER 3

Question 1

Sketch the following curves on separate axes, showing all intercepts and turning
points:

(a) y = sinx, hence y2 = sinx (in the domain −2π ≤ x ≤ 2π)

(b) y = 4x− x3, hence y = 4|x| − |x3| (in the domain −3 ≤ x ≤ 3)

(c) y = ln | tanx|, (in the domain − 3π
2 ≤ x ≤ 3π

2 )

(d) y = x2−2
x2−1 , (in the domain −3 ≤ x ≤ 3)

Question 2

(a) Evaluate
∫ 0

−1
x3

√
2 − x2 dx

(b) Find the following integrals:

(i)
∫

dx
(x+1)(x+3)2 (ii)

∫
dx

1+sin x

(c) Find the exact value of
∫ 1

0
xex2

dx

(d) Given I2n+1 =
∫ 1

0
x2n+1ex2

dx where n is a positive integer, show that
I2n+1 = 1

2e− nI2n−1. Hence, or otherwise, evaluate
∫ 1

0
x5ex2

dx.

Question 3

(a) Express −1 +
√

3i in mod-arg form.

(b) Given z = 1+i
√

3
1+i

(i) express z in the form a + ib

(ii) show that z =
√

2
(
cos π

12 + i sin π
12

)

(iii) find exact values of cos π
12 and sin π

12

(c) On an Argand diagram, the points P and Q represent the numbers z1 and
z2 respectively. OPQ is an equilateral triangle. Show that z2

1 + z2
2 = z1z2.

Question 4

(a) For the rectangular hyperbola xy = 12, find:

(i) the eccentricity
(ii) the coordinates of the foci
(iii) the equations of the directrices
(iv) the equations of the asymptotes
(v) sketch the hyperbola
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(b) P (a sec θ, b tan θ) lies on the rectangular hyperbola x2 − y2 = a2. A is the
point (a, 0). M is the midpoint of AP . Find the equation of the locus of M .

(c) P (ct, c
t ) lies on the rectangular hyperbola xy = c2. The normal at P meets

the hyperbola again at Q. M is the midpoint of PQ. Find the equation of the
locus of M .

Question 5

(a) Use the method of cylindrical shells to find the volume of a torus (doughnut)
with inner radius 3 cm and outer radius 5 cm.

(b) The base of a solid is the segment of the parabola x2 = 4y cut off by the
line y = 2. Each cross-section (perpendicular to the axis of the parabola) is a
right-angled isosceles triangle with hypotenuse in the base of the solid. Find
the volume of the solid.

(c)

Calculate the volume of the frustrum of a cone, with radii of the top and bottom
circles being r and R respectively, and the height of the frustrum being H.

Question 6

(a) The polynomial function P (x) = x4 − 2x3 + 6x2 − 2x + 5 has a zero at
x = 1 + 2i. factorise P (x) over the field of:

(i) rationals
(ii) reals
(iii) complex numbers

(b) The equation x4 + 4x3 − 3x2 − 4x − 2 = 0 has roots α, β, γ, δ. Find the
equations with roots 1

α ,
1
β ,

1
γ ,

1
δ .
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(c) The equation 2x3 − 9x2 + 7 = 0 has roots α, β, γ. Find the equation with
roots α3, β3, γ3.

(d) Solve x5 + 2x4 − 2x3 − 8x2 − 7x− 2 = 0 if it has a root of multiplicity 4.

Question 7

(a) In the figure, AB and CD are two chords of the circle. AB and CD

intersect at E. F is a point such that AB̂F and DĈF are right angles.

Prove that FE produced is perpendicular to AD.

(b) Two circles intersect in A and B. C and D are points on the respective
circles such that ∠CAB = ∠DAB. CB and DB are produced to cut the circles
again at E and F .

(i) Draw a neat diagram depicting the given information.
(ii) Show that BC.BE = BD.BF.

(c) Show that (a + b + c)
(

1
a + 1

b + 1
c

)
≥ 9

(d) Using calculus, show that x ≥ ln(1 + x) for x ≥ −1.

Question 8

(a) A particle of mass 10 kg is found to experience a resistive force, in newtons,
of one-ninth of the square of its velocity in metres per second when it moves
through the air. The particle is projected vertically upwards from a point
O with a velocity of 30

√
3 m/s and the point A, vertically above O, is the

highest point reached by the particle before it starts to fall to the ground
again. Assuming the value of g is 10 m/s2:

(i) find the time the particle takes to reach A from O.
(ii) find the height OA.

(b) The railway line around a circular arc of radius 800 m is banked by raising
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the outer rail to a level above the inner rail. When the train travels at 10 m/s,
the lateral thrust on the inner rail is the same as the lateral thrust on the outer
rail at a speed of 20 m/s. Calculate the angle of banking and the speed of the
train when there is no lateral thrust exerted on the rails. (Use g = 9·8 m/s2.)
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