NEW SOUTH WALES

Higher School Certificate

Mathematics Extension 2

Exercise 47/67

by James Coroneos*

- 1. Starting from the identity $(\cos \theta + i \sin \theta)^4 = \cos 4\theta + i \sin 4\theta$, find an expression for $\cos 4\theta$ in terms of powers of $\cos \theta$. Write down an expression for $\sin 4\theta$ in terms of $\sin \theta$, $\cos \theta$ and hence determine a result for $\tan 4\theta$ in terms of $\tan \theta$.
- **2.** Express $\cos 5\theta$ as a polynomial in $\cos \theta$, and obtain a similar expression for $\sin 5\theta$ as a polynomial in $\sin \theta$.
 - (a) Solve the equation $\cos 5\theta = 1$ for $0 \le \theta < 2\pi$, and hence show that the roots of the equation $16x^5 20x^3 + 5x 1 = 0$ are $x = \cos \frac{2r\pi}{5}$ for r = 0, 1, 2, 3, 4. Hence prove that $\cos \frac{\pi}{5} \cos \frac{2\pi}{5} = \frac{1}{4}$ and $\cos \frac{\pi}{5} \cos \frac{2\pi}{5} = \frac{1}{3}$.
 - 0,1,2,3,4. Hence prove that $\cos\frac{\pi}{5}\cos\frac{2\pi}{5}=\frac{1}{4}$ and $\cos\frac{\pi}{5}-\cos\frac{2\pi}{5}=\frac{1}{2}$. (b) Solve the equation $\cos 5\theta=0$ for $0\leq \theta<2\pi$, and hence show that the roots of the equation $16x^4-20x^2+5=0$ are $x=\cos\frac{(2r+1)\pi}{10}$ for r=0,1,3,4. Determine the exact value for $\cos\frac{\pi}{10}\cos\frac{3\pi}{10}$ and $\cos^2\frac{\pi}{10}+\cos^2\frac{3\pi}{10}$.
 - (c) Solve the equation $\sin 5\theta = 1$ for $0 \le \theta < 2\pi$, and hence show that the roots of the equation $16x^4 + 16x^3 4x^2 4x + 1 = 0$ are $x = \sin \frac{(4r+1)\pi}{10}$, where r = 0, 2, 3, 4. Determine the exact value of $\sin \frac{\pi}{10} \sin \frac{3\pi}{10}$.
 - (d) Show that $x = \pm \sin \frac{r\pi}{5}$ for r = 1, 2 are the roots of the equation $16x^4 20x^2 + 5 = 0$, and prove that $\sin^2 \frac{\pi}{5} + \sin^2 \frac{2\pi}{5} = \frac{5}{4}$.

^{*}Other resources by James Coroneos are available. Write to P.O. Box 25, Rose Bay, NSW, 2029, Australia, for a catalogue. Typeset by $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ -TeX.

- **3.** Prove that $\cos 7\theta = 64 \cos^7 \theta 112 \cos^5 \theta + 56 \cos^3 \theta 7 \cos \theta$
 - (i) Hence show that $x = \cos \frac{(2r+1)\pi}{14}$ for r = 0, 1, 2, 4, 5, 6 are the roots of the equation $64x^6 112x^4 + 56x^2 7 = 0$. Deduce that $\cos \frac{\pi}{14} \cdot \cos \frac{3\pi}{14} \cdot \cos \frac{5\pi}{14} = \frac{7}{9}$ and $\cos^2 \frac{\pi}{14} + \cos^2 \frac{3\pi}{14} + \cos^2 \frac{5\pi}{14} = \frac{7}{4}$
 - $\cos \frac{\pi}{14} \cdot \cos \frac{3\pi}{14} \cdot \cos \frac{5\pi}{14} = \frac{\sqrt{7}}{8} \text{ and } \cos^2 \frac{\pi}{14} + \cos^2 \frac{3\pi}{14} + \cos^2 \frac{5\pi}{14} = \frac{7}{4}$ (ii) Solve the equation $\cos 7\theta = 1$ for $0 \le \theta < 2\pi$, and hence show that $x = \cos \frac{2k\pi}{7}$ for k = 0, 1, 2, 3, 4, 5, 6 are the roots of the equation $64x^7 112x^5 + 56x^3 7x = 1$. Deduce that $\cos \frac{\pi}{7} + \cos \frac{3\pi}{7} + \cos \frac{5\pi}{7} = \frac{1}{2}$ and $\cos \frac{\pi}{7} \cos \frac{3\pi}{7} \cos \frac{5\pi}{7} = -\frac{1}{8}$.
- **4.** If $z = \cos \theta + i \sin \theta$, show that $z + z^{-1} = 2 \cos \theta$ and $z^n + z^{-n} = 2 \cos n\theta$. Find corresponding expressions for $z z^{-1}$ and $z^n z^{-n}$.
 - (i) By expanding $(z + \frac{1}{z})^4$, find an expression for $\cos^4 \theta$ in the form $a \cos 4\theta + b \cos 2\theta + c$. Check this result when $\theta = \pi/4$ and evaluate $\int_0^{\pi} \cos^4 \theta \ d\theta$.
 - (ii) Use the expansion of $(z \frac{1}{z})^5$ to express $\sin^5 \theta$ in the form $a \sin 5\theta + b \sin 3\theta + c \sin \theta$, and state the values of a, b, c.
- **5.** Prove that $\cos^6 \theta = \frac{1}{32} (\cos 6\theta + 6\cos 4\theta + 15\cos 2\theta + 10)$, and hence evaluate $\int_0^{\pi/2} \cos^6 \theta \ d\theta$.
- **6.** Show that $(1 + \cos 2\theta + i \sin 2\theta)^n = 2^n \cos^n \theta(\cos n\theta + i \sin n\theta)$; where n is a positive integer. By considering the binomial expansion of $(1 + z)^n$ where $z = \cos 2\theta + i \sin 2\theta$, show that $2^n \cos^n \theta \cos n\theta = \sum_{r=0}^n {}^n C_r \cos 2r\theta$, and hence evaluate $\int_0^{\pi/2} \cos^n \theta \cos n\theta \ d\theta$.
- 7. Prove that $1 \cos \theta i \sin \theta = 2 \sin \frac{\theta}{2} \{\cos(\frac{\pi \theta}{2}) i \sin(\frac{\pi \theta}{2})\}$. From the binomial expansion of $(1 x)^n$ where $x = \cos \theta + i \sin \theta$ and n is a positive integer, show that $2^n \sin^n \frac{\theta}{2} \cos n(\frac{\pi \theta}{2}) = \sum_{r=0}^n (-1)^{rn} C_r \cos r\theta$, and obtain a similar expression for $2^n \sin^n \frac{\theta}{2} \sin n(\frac{\pi \theta}{2})$.
- 8. Show that $1 \cos 2\theta + i \sin 2\theta = 2i \sin \theta (\cos \theta i \sin \theta)$. Use the binomial expansion of $(1 \cos 2\theta + i \sin 2\theta)^{2n}$, where n is an even positive integer, to prove that $2^{2n} \sin^{2n} \theta \cos 2n\theta = \sum_{r=0}^{2n} (-1)^{r} C_r \cos 2r\theta$, and hence evaluate $\int_0^{\pi} \sin^{2n} \theta \cos 2n\theta \ d\theta$.
- 9. By substituting $z = r(\cos \theta + i \sin \theta)$ in the identity $1 + z + z^2 + \dots + z^n + \dots = \frac{1}{1-z}$, where |z| < 1, prove that $1 + r \cos \theta + r^2 \cos 2\theta + r^3 \cos 3\theta + \dots = \frac{1-r\cos \theta}{1-2r\cos \theta + r^2}$ and $r\sin \theta + r^2\sin 2\theta + r^3\sin 3\theta + \dots = \frac{r\sin \theta}{1-2r\cos \theta + r^2}$.
- **10.** If $C = 1 + \cos \theta + \cos 2\theta + \cos 3\theta + \cdots$ and $S = \sin \theta + \sin 2\theta + \sin 3\theta + \cdots$. Show that $C + iS = \frac{1}{1 \cos \theta i \sin \theta}$, and hence prove that $C = \frac{1}{2}$ and $S = \frac{1}{2} \cot \frac{\theta}{2}$.

http://www.geocities.com/coroneosonline

- **11.** If $X = 1 + \frac{a}{b} \cos C + (\frac{a}{b})^n \cos 2C + (\frac{a}{b})^3 \cos 3C + \cdots$ and $Y = \frac{a}{b}\sin C + (\frac{a}{b})^2 \sin 2C + (\frac{a}{b})^3 \sin 3C + \cdots, \text{ where } |a| < |b| \text{ show that } X + iY = \frac{b(b-a\cos C+ia\sin C)}{(b-a\cos C)^2+a^2\sin^2 C}. \text{ If } A, B, C \text{ are the angles and } a, b, c \text{ the sides } A, b, c \text{ the sides$ of a triangle ABC, hence prove $X = b\cos A/c$ and $Y = b\sin A/c$. {Hint: You may assume in $\triangle ABC$ that $b = a \cos C + c \cos A$.
- 12. Express the complex number 1+i in the form $r(\cos\theta+i\sin\theta)$, and hence prove that $(1+i)^n + (1-i)^n = 2(2^{n/2} \cdot \cos \frac{n\pi}{4})$ where n is a positive integer. If $(1+x)^n = p_0 + p_1 x + p_2 x^2 + \dots + p_n x^n$, prove that $p_0 - p_2 + p_4 - \dots = 2^{n/2} \cos \frac{n\pi}{4}$ and $p_1 - p_3 + p_5 - \cdots = 2^{n/2} \sin \frac{n\pi}{4}$
- **13.** If $u = z + \frac{1}{z}$, show that $z^6 + \frac{1}{z^6} = u^6 6u^4 + 9u^2 2$. Hence prove that $1 + \cos 12\theta = 2(32\cos^6\theta 48\cos^4\theta + 18\cos^2\theta 1)^2$.
- **14.** By using de Moivre's theorem, prove that $\frac{\sin 7\theta}{\sin \theta} = -64 \sin^6 \theta + 112 \sin^4 \theta$ $56\sin^2\theta + 7$. Show that $8\cos\theta\cos 2\theta\cos 3\theta - 1 = \frac{\sin 7\theta}{\sin\theta}$, and find all the angles θ between 0 and 2π for which $\cos\theta\cos 2\theta\cos 3\theta = \frac{1}{4}$.
- 15. Use de Moivre's theorem to obtain an expression for $\tan 5\theta$ in terms of $\tan \theta$. Show that $\pm \tan \frac{r\pi}{5}$, r=1,2 are the roots of the equation $t^4-10t^2+5=0$ and deduce that $\tan \frac{\pi}{5} \tan \frac{2\pi}{5} = \sqrt{5}$ and $\tan^2 \frac{\pi}{5} + \tan^2 \frac{2\pi}{5} = 10$.
- 16. Use de Moivre's theorem to obtain expressions for $\cos 6\theta$, $\sin 6\theta$ in terms of $\sin \theta$ and $\cos \theta$.

 - (i) Prove that $\cot 6\theta = \frac{1-15t^2+15t^4-t^6}{2t(3-10t^2+3t^4)}$ where t denotes $\tan \theta$. (ii) Give all the roots of $\cos 6\theta = 0$ for $0 \le \theta < 2\pi$, and hence find the value of $\tan \frac{\pi}{12} \tan \frac{5\pi}{12}$ and $\tan^2 \frac{\pi}{12} + \tan^2 \frac{5\pi}{12}$.
- 17. By expanding $(\cos \theta + i \sin \theta)^6$ in 2 different ways, express $\cos 6\theta$ in a series of powers of $\cos \theta$. Find the roots of $\cos 6\theta = 0$ and hence prove that $\cos 6\theta = 0$ $32(\cos^2\theta - \cos^2\frac{\pi}{12})(\cos^2\theta - \frac{1}{2})(\cos^2\theta - \cos^2\frac{5\pi}{12})$
- 18. Establish the following results, where n is any positive integer greater than 1: (i) $(\cot \theta + i)^n - (\cot \theta - i)^n = 2i \sin n\theta / \sin^n \theta$
 - (ii) the roots of the equation $(x+i)^n = (x-i)^n = 0$ are

 - $\cot \frac{\pi}{n}, \cot \frac{2\pi}{n}, \cot \frac{3\pi}{n}, \dots, \cot \frac{(n-1)\pi}{n}.$ (iii) $(x+i)^n (x-i)^n = 2i\{{}^nC_1x^{n-1} {}^nC_3x^{n-3} + {}^nC_5x^{n-5} \dots\}$ (iv) $\cot^2 \frac{\pi}{n} + \cot^2 \frac{2\pi}{n} + \cot^2 \frac{3\pi}{n} + \dots + \cot^2 \frac{(n-1)\pi}{n} = \frac{(n-1)(n-2)}{3}$ {Use the results in (ii), (iii).}

