NEW SOUTH WALES

Higher School Certificate

Mathematics Extension 2

Exercise 10/67

by James Coroneos*

- 1. If $z_1 = 2 + 3i$, $z_2 = -1 + 4i$, show on separate Argand diagrams (i) z_1 (ii) z_2 (iii) $z_1 + z_2$ (iv) $z_1 z_2$ (v) $z_2 z_1$ (vi) $z_1 z_2$ (vii) iz_1 (viii) iz_2
- 2. Show on separate Argand diagrams the points representing
 - (i) 2-i (ii) 3+4i (iii) (2-i)+(3+4i) (iv) (2-i)-(3+4i)
 - (v) (2-i)(3+4i) (vi) i(2-i) (vii) i(3+4i)
- **3.** Verify the triangle inequalities, $|z_1 + z_2| \le |z_1| + |z_2|$, $|z_1 z_2| \ge |z_1| |z_2|$ when (a) $z_1 = 2 + 3i$, $z_2 = -1 + 4i$ (b) $z_1 = 2 i$, $z_2 = 3 + 4i$.
- **4.** If $z_1 = r_1(\cos \theta_1 + i \sin \theta_1)$, $z_2 = r_2(\cos \theta_2 + i \sin \theta_2)$ express $z_1 z_2$ and z_1/z_2 in mod-arg form.
 - (i) Find the modulus and argument of $z_1 = -2\sqrt{3} + 2i$, $z_2 = 4i$, $Z = \frac{1}{2}(1 + i\sqrt{3})$. Deduce that $Z = z_1/z_2$ and verify this by expressing z_1/z_2 in the form x + iy.
 - (ii) Show that $Z^3 = -1$ and find all the roots of $z^3 = -1$.
- **5.** The points O, A, P_1, P_2, P in an Argand diagram correspond respectively to the complex numbers $0, 1, z_1, z_2, z$. Further, the triangles OP_2P_1 , OAP are similar, with vertices corresponding in the order given. Prove that $z = z_1/z_2$.
- **6.** Show by induction that $|z_1 + z_2 + z_3 + \dots + z_n| \le |z_1| + |z_2| + |z_3| + \dots + |z_n|$ assuming that $|z_1 + z_2| \le |z_1| + |z_2|$.

^{*}Other resources by James Coroneos are available. Write to P.O. Box 25, Rose Bay, NSW, 2029, Australia, for a catalogue. Typeset by \mathcal{AMS} -TeX.