WESTERN REGION

Multiple Choice Answer Sheet

Question 23	HSC Trial Examination-	2009	
Part Solution		Marks	Comment
(a) Attendar (i)	ce in NSW = $630\ 000 - 410\ 000$ =220\ 000	1	
(a) Queensla (ii) 2004 the WA only after that	and had the highest attendance of any state in n decreased over the following years, while began in 2005 and grew steadily each year	n 2	1 for decrease in Qld and 1 for increase in WA
(b) 5 L/s = = =	5 × 60 × 60 L/h = 18000 L/h 18000 ÷ 1000 kL /h 18 kL /h	1	
(c) $Area = 2$ (i) $= 2$	tab t × 1.2 × 2.3 $8.7 m^2$		
(c) Volume (ii) Volume Volume	$tank = Ah$ $= 8.7 \times 10.4$ $= 90.2 m^{3}$ $tophere = \frac{4}{3} \pi r^{3}$ $= \frac{4}{3} \times \pi \times (15)^{3}$ $= 14 137 m^{3}$ of refills = 14 137 ÷ 90.2 = 156.77 $= 156 complete refills$	2	
(d) $5x + 3(2)$ 5x + 6 2x	$-x) = \frac{2x}{3} + 12$ $-3x = \frac{2x}{3} + 12$ $+ 6 = \frac{2x}{3} + 12$ $2x = \frac{2x}{3} + 6$ 6x = 2x + 18 4x = 18 x = 4.5	3	 3 marks for complete solution 2 marks if 1 or 2 simple errors made 1 mark if some correct manipulation done
(e) Angle = Percenta	$\frac{72^{\circ}}{360} = \frac{72}{360} \times 100$ = 20%	1	
(f) Cost of Cost of s Saving =	separate parcels = $$30.00 + 50.00 = $$80.00$ single parcel (5.5 kg) = \$65.00 \$15.00	2	2 marks for correct answer 1 mark if

Question 24HSC Trial Examination-	nation- 2009	
Part Solution	Marks	Comment
(a) Fortnightly net $pay = 46\ 800\ \div\ 26\ -\ 480$	1	
(i) $=$ \$1 320		
(a) Taxable income = $46\ 800\ +\ 480\ -\ 1\ 500$	1	
(ii) $=$ \$45780		
(a) Income tax = $11400 + 0.50 \times 780$	2	2 marks for
(iii) = \$11 790		final result
$M \text{ edicare levy} = 0.015 \times 45780$		
- \$686.70		1 mark if
Tax due = 686.70 + 11790		or Medicare
- \$12,476.70		is correct
(a) Tax Paid $=$ \$480 \times 26	1	
(iv) 12.490		
= \$12,480		
Tax Refund = $$12480 - 12476.70		
= \$3.30 refund		
(b) $12 - 4 = 18 - 10 = 8$	1	
$\begin{array}{c c} (1) \\ (b) \\ \hline 38 \\ \hline \end{array}$	1	
$\begin{array}{c} (0)\\ (ii) \end{array} P(Success) = \frac{58}{50} \end{array}$		
10		
$=\frac{19}{25}=0.76$		
(b) $P(\text{Success given predicted success}) = \frac{28}{3}$	1	
(iii) (Success given predicted success) 32		
$=\frac{7}{2}=0.875$		
8 0000		1.6
(b) (iv) P(Failure given predicted failure) = $\frac{8}{18}$	2	1 for
		failure
$=\frac{4}{9}=0.444$		1 for reason
She is better at predicting success as she was right		
87.5% of the time when she predicted success but only		
44.4% when she predicted failure.		
(c) $N = M \left\{ \frac{(1+r)^n - 1}{r} \right\}$	2	1 for sub in
(1) $r(1+r)^n$		correctly
$\left[(1 01)^{72} 1 \right]$		concerty
$25\ 000 = M \left\{ \frac{(1.01)^{-1}}{0.01(1.01)^{72}} \right\}$		1 for
		calculating
$25\ 000 = 51.1\ M$		answer
$M = \frac{25000}{5111}$		
51.1		
= \$488.75		
(c) Interest = $488.75 \times 72 - 25\ 000$	1	Accept
$(11) = 35\ 190 - 25\ 000$		10 191
= \$10 190		

Quest	tion 25 HSC Trial Examination-	2009	
Part	Solution	Marks	Comment
(a)	Hyperbola	1	
(i)	(20)	-	
(a) (ii)	600 m	1	
(n) (a)	240 to 250 m	1	
(iii)			
(a)	Width 800, length 75, perimeter 1750m	1	
(iv)	Width 300, length 200 perimeter 1000m		
(b)	The 300 m width paddock would be cheaper to fence.		
(b) (i)	Mikes dart Lydias Dart		
	0.6	Hit 20	1
	0.8 Hit 20 0.4		
		Miss 20	
	0.2 0.6	Hit 20	
	Miss 20 0.4		
		Miss 20	
(b)	$P(HH) = 0.8 \times 0.6$	1	
(ii)	= 0.48		
(b)	$P(HM) + P(MH) = 0.8 \times 0.4 + 0.2 \times 0.6$	1	
(iii)	= 0.32 + 0.12		
	= 0.44		
(b)	<i>P</i> (at least one <i>H</i>) = $0.48 + 0.44$	1	
(iv)	= 0.92		
	OR		
	P (at least one H) = 1 - $P(MM)$		
	$= 1 - 0.2 \times 0.4$		
	= 0.92		
(c)	YB _ 1.5	2	1 for sub in
(i)	$\sin 34^{\circ}$ sin 86°		sine rule
	VP = 1.5 (sin 34°)		1 for
	$\frac{10}{\sin 86^{\circ}} (\sin 34)$		1 IOF
	= 0.841 km		calculation
(c)	$XB^{2} = 2.4^{2} + 1.5^{2} - 2 \times 2.4 \times 1.5 \times \cos 75^{\circ}$	2	1 for sub in
(ii)	-615		cosine rule
	- 0.1 <i>3</i>		1.6
	AB = 2.5 km		1 IOT
			carculation

Ques	tion 26 HSC Trial Examination-	2009	
Part	Solution	Marks	Comment
(a) (i)	No combinations $= 16 \times 15 = 240$ combinations	1	
(a)	Combinations of 4 players from 14 players = $14 \times 13 \times 12 \times 11 = 24024$ combinations	1	
(ii)	Order isn't important, so arrangements $4 = 4 \times 3 \times 2 \times 1 = 24$		
	So number of ways of selecting rest of team = $24024 \div 24 = 1001$		
(b) (i)	$P(BB) = \frac{40}{90} \times \frac{35}{80}$	1	
	$-\frac{1}{36}$		
(b)	P(B and G) = P(BG) + P(GB)	1	
(11)	$=\frac{40}{90} \times \frac{45}{80} + \frac{50}{90} \times \frac{35}{80}$		
	$=\frac{71}{1}$		
	144		
(c) (i)	$S = V_0(1-r)^n$	2	
(1)	$=5800(1-0.3)^{6}$		
	= \$682.36		
(c)	$S = V_0 (1 - r)^n$ OR $S = V_0 - Dn$	2	
(11)	$= 5800(1-0.3)^3$ $= 5800 - 1200 \times 3$		
	= \$1989.40 = \$2 200.00		
(1)	Straight line gives greater value		
(d) (i)	Number of players from Western = 8% of 250	1	
(1)	= 20 players		1 1
(d) (ii)	Min Ext = 166 $Q_1 = 178$ $Q_2(median) = 185$ $Q_3 = 193$ Upper Ext = 202	3	l each
(11)			Extremes
	o0		Median
			Quartiles
	160 165 170 175 180 185 190 195 200 205 210		
(d)	Sample $SD = 10.85$	1	
(iii)			

Questi	ion 27 HSC Trial Examination-	2009	
Part	Solution	Marks	Comment
(a)	Angular distance = $10^{\circ} + 30^{\circ} = 40^{\circ}$	2	1 for Ang dist
(1)	Distance = $40 \times 60 M$		1 for dist
	= 2400 M		
(a)	Time = distance/speed	1	
(11)	$=\frac{2400}{15}$		
	= 160 hours		
	$= 6\frac{2}{3}$ days or 6 days 16 hrs		
(a)	40° longitude difference $\Rightarrow 40 \times 4$ minutes time difference	2	1 for time
(iii)	FI is 2 hrs and 40 min later and on other side of Date line		1 for date
	Time on FI is $6:30 + 2:40 = 9:10$ am on Friday 14th August.		1 Ior date
(b)	Deposit $= 0.2 \times 1750$	2	1 for
(i)	= \$350.00		payments
	$Payments = 24 \times \$95.70$		
	= \$2 296.80		1 for extra
	Total Paid = $2296.80 + 350.00$		paid
	= \$2 646.80		
	Interest $=$ \$2 646.80 - 1750.00		
	= \$896.80		
(b)	Interest Rate = $\frac{\$896.80}{\div2}$	1	
(11)	1400 = 220% m s		
(c)	= 32% p.a.	3	1 for equation
	$I \propto \frac{1}{d^2}$	5	
	$I - \frac{k}{2}$		1 for value of
	$1 - \frac{1}{d^2}$		k
	$25 = \frac{k}{40^2}$		
	k = 40,000		
	$I = \frac{40000}{d^2}$		1 for answer
	40000		
	$=\frac{10000}{50^2}$		
	= 16 metres		

(d)	Rate per day =			2	Allow for
	0.0003835		th	_	rounding
	Amount	Days Interest	Interest to 5 th Aug		errors
	68.00	34	0.8867		Accept \$2.25 -
	53.50	20	0.4104	_	\$2.35
	40.00	13	0.1995	_	
	105.50	10	0.4047	_	
	150.80	/	0.4049		
		Total Interest =	\$ 2.31		

Quest	tion 28 HSC Trial Examination-	2009	
Part	Solution	Marks	Comment
(a) (i)	Geog $z_G = \frac{67 - 55}{8} = 1.5$	2	1 finding each z score
	Hist $z_H = \frac{72 - 60}{12} = 1$		
	Geography result is better.		\frown
a) ii)	Z score = $\frac{63-55}{8} = 1$	1	5
. ,	68% lie between 1 and -1		
	34% lie between 0 and 1		
<u>(a)</u>	10% greater than 1 5% lie outside -2 and 2 so 2 5% lie above 2	2	1 for z scores
(iii)	Hist z score of $2 = 60 + 2 \times 12 = 84$ (1 above)		and 1 for
	Geog z score of $2 = 55 + 2 \times 8 = 71$ (1 above)		identifying
	2 students would be invited, Catalina on Hist and Bella		students
	on Geog		above
b)	$YC^2 = 15^2 + 120^2$	1	
1)	= 14625		
	$YC = \sqrt{14625}$, 	
	= 121 cm (3 s. f.)		
b) ii)	$Area = \frac{1}{2}ab\sin C$	2	1 for substitution
	$=\frac{1}{2} \times 15 \times 121 \times \sin 95^{\circ}$		
	$=904 \text{ cm}^2$		1 for answer
b)	Area $\triangle ABC = \frac{1}{2} \times 120 \times 45 = 2700 \text{ cm}^2$	1	Accept any
(111)	Porcentage 22		method to
	$refree = \frac{904}{2700} \times 100 = 33.5\%$		solution
c)	A strong positive correlation.	1	solution
i)			
(c) (ii)	Gradient = $\frac{12}{8} = 1.5$	1	
<u>(c)</u>	N = 1.5Y + 2 or equivalent with other variables.	1	
<u>111)</u> (c)	$N = 1.5 \times 20 + 2 = 32$ problems	1	
(iv)		-	
· · · ·			
Y			
	▼		