

GENERAL MATHEMATICS 4TH DECEMBER 2003

YEAR 12

ASSESSMENT TASK 1

EXAMINERS ~ S. HACKETT, R. YEN, G. RAWSON

GENERAL INSTRUCTIONS

- Reading time 5 minutes.
- Working time 40 hours.
- This paper has 3 questions, worth 13 marks each.
- Attempt all questions.
- Start each question on a new sheet of paper.
- Necessary working should be shown in every question.
- Marks may not be awarded for careless or badly arranged work.
- Board-approved calculators may be used.
- This examination must **NOT** be removed from the examination room.
- A formula sheet is provided at the back of this paper and may be detached for use.

STUDENT NAME:

2

2

(a) The speed in km/h of cars on a main road was recorded and graphed with class centres 56, 60, 64 and so on up to 80. The cumulative frequency histogram and polygon of the results are shown below:

- (i) How many cars' speeds were recorded during the period?
- (ii) What is the highest possible speed that could have been recorded?
- (iii) Use the graph to estimate the median speed.
- (iv) Determine an estimate of the interquartile range from the graph.
- (b) The number of matches in 15 matchboxes was counted. The data is shown below:
 - 52 51 50 49 50 58 51 48 51 50 49 53 50 49 51
 - (i) Calculate the mean and standard deviation for the data correct to 1 decimal place.
 - (ii) Find the five-number summary for the data.
 - (iii) Draw a boxplot to represent the data.
 - (iv) Which measure of location (mean, median or mode) would best represent the number of matches in a box? Give a reason for your answer.

(a) If an event has a probability of $\frac{5}{9}$, would the event be unlikely, fifty-fifty or probable?

1

(b) From past performances, it is known that a golfer has a probability of 0.8 of sinking a putt. What is the probability that he misses the putt?

4

(c) What is the probability of correctly guessing the 4-digit PIN number to a bank account card?

2

- (d) Alex is choosing the background colour for three consecutive pages of his Art assignment. For the first page he must choose either red, black or white; for the second page, black or orange; and for the third, red or black.
 - (i) Draw a tree diagram to show all possible outcomes.

3

(ii) If Alex selects each colour at random, find the probability that at least two of the pages will be black.

2

(e) The number of days absent of the workers at a factory are shown on this frequency table.

Days absent	Number of workers f 7 3				
0					
1					
2	11				
3	. 6				
4	2				
5	1				

If one is selected at random from the factory, what is the probability that the worker has been absent for:

(i) 4 days?

2

(ii) less than 4 days?

1

(iii) less than 7 days?

1

(a) Calculate the simple interest earned on a principal of \$14 200 invested at 3.75% p.a. for 18 months.

2

(b) An apartment unit appreciates by 10.5% every year. Its present value is \$175 000. Find, correct to the nearest dollar:

2

(i) its value 3 years from now

_

(ii) its value 3 years ago

(c) Use the table below to calculate the compound interest earned on \$28 000 invested at 6% p.a. compounded yearly for 4 years.

2

Final amount of an investment of \$1 Values of $(1+r)^n$										
No. of periods,	Interest rate per compounding period, r									
n n	0.01	0.03	0.04	0.05	0.06	0.08	0.1	0.15	0.2	
	1.010	1.030	1.040	1.050	1.060	1.080	1.100	1.150	1.200	
1		1.061	1.082	1.103	1.124	1.166	1.210	1.323	1.440	
2	1.020			1.158	1.191	1.260	1.331	1.521	1.728	
3	1.030	1.093	1.125		1.262	1.360	1.464	1.749	2.074	
4	1.041	1.126	1.170	1.216			1.611	2.011	2.488	
5	1.051	1.159	1.217	1.276	1.338	1.469			2.986	
-	1.062	1.194	1.265	1.340	1.419	1.587	1.772	2.313		
6			1.316	1.407	1.504	1.714	1.949	2.660	3.583	
7	1.072	1.230			1.594	1.851	2.144	3.059	4.300	
8	1.083	1.267	1.369	1.477	1.337	1.001				

- (d) Cassie bought 2400 shares in Network Ten through a stockbroker for \$3.15 each. The brokerage was 3% of the buying price and the stamp duty was 30 cents per \$100 or part thereof of the buying price.
 - (i) Calculate Cassie's total cost of buying the shares.

2

(ii) Calculate the dividend yield correct to one decimal place if each share earned a dividend of 69 cents.

1

(e) Calculate the final amount when an amount of \$28 000 is invested at 5.7% p.a. compounded half-yearly over 5 years. Answer to the nearest dollar.

2

FORMULAE SHEET

Simple interest

I = Prn

P = initial quantity

 percentage interest rate per period, expressed as a decimal

n = number of periods

Compound interest

 $A = P(1+r)^n$

A = final balance

P = initial quantity

n = number of compounding periods

r = percentage interest rate per compounding period, expressed as a decimal

Future value (A) of an annuity

$$A = M \left\{ \frac{(1+r)^n - 1}{r} \right\}$$

M =contribution per period, paid at the end of the period

Present value (N) of an annuity

$$N = M \left\{ \frac{(1+r)^n - 1}{r(1+r)^n} \right\}$$

or

$$N = \frac{A}{(1+r)^n}$$

Straight-line formula for depreciation

 $S = V_0 - Dn$

S = salvage value of asset after n periods

 V_0 = purchase price of the asset

D =amount of depreciation apportioned per period

n = number of periods

Declining balance formula for depreciation

 $S = V_0 (1-r)^n$

S = salvage value of asset after n periods

r = percentage interest rate per period, expressed as a decimal

Mean of a sample

$$\bar{x} = \frac{\sum x}{n}$$

$$\bar{x} = \frac{\sum fx}{\sum f}$$

 $\bar{x} = \text{mean}$

x = individual score

n = number of scores

f = frequency

Formula for a z-score

$$z = \frac{x - \bar{x}}{s}$$

s = standard deviation

Gradient of a straight line

 $m = \frac{\text{vertical change in position}}{\text{horizontal change in position}}$

Gradient-intercept form of a straight line

y = mx + b

m = gradient

b = y-intercept

Probability of an event

The probability of an event where outcomes are equally likely is given by:

 $P(\text{event}) = \frac{\text{number of favourable outcomes}}{\text{total number of outcomes}}$

