2009 HSC Course TRIAL EXAMINATION

General Mathematics

General Instructions

- Reading Time 5 minutes
- Working Time $2\frac{1}{2}$ hours
- Write using a blue or black pen
- Board Approved calculators may be used
- A formulae sheet is provided at the back of this paper which may be detached and used throughout the paper.

Total Marks 100

Section I

Total marks (22)

- Attempt Questions 1-22
- Answer on the Multiple Choice answer sheet provided.
- Allow about 30 minutes for this section

Section II

Total marks (78)

- \circ Attempt questions 23 28
- Answer on the blank paper provided, unless otherwise instructed. Start a new page for each question.
- \circ Allow about 2 hours for this section

Section I

Total marks (22)

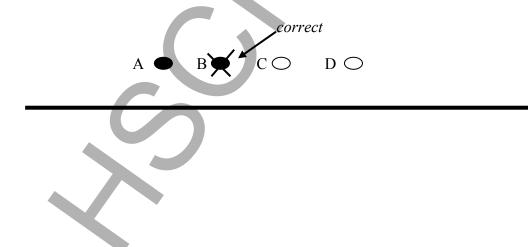
Attempt Questions 1-22

Allow about 30 minutes for this section

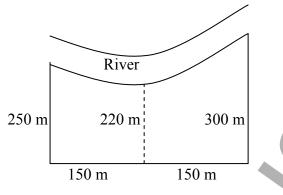
Use the multiple choice answer sheet.

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.

Sample


 $A \bigcirc B \bigcirc C \bigcirc$

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.


 $D \bigcirc$

If you change your mind and have crossed out what you consider to be the correct answer, then indicate this by writing the word *correct* and drawing an arrow as follows:

- 1. Which expression below is the expansion of $2xy(2x^2 xy)$?
 - $(A) \qquad 4x^2y 2x^2y^2$
 - $(B) \qquad 4x^3y 2x^2y^2$
 - (C) $4x^3y 2xy$
 - $(D) \qquad 2x^3y x^2y^2$
- 2. A paddock which is bordered by a river is shown below.

Use Simpsons Rule to find the area of the paddock.

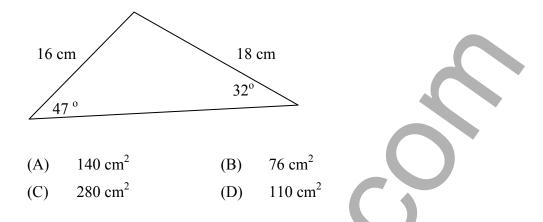
(A)	$115\;500\;{\rm m}^2$	(B)	$38\;500\;{\rm m}^2$
(C)	$143\ 000\ m^2$	(D)	71 500 m ²

3. The scores below are the marks that Julio scored on 10 skills tests.
12, 14, 20, 20, 25, 32, 32, 34, 38, 40
The interquartile range of the scores is:

(A)	6	(B)	19
(C)	14	(D)	28

4. The cost per student (C) for a Mathematics excursion is given by the equation

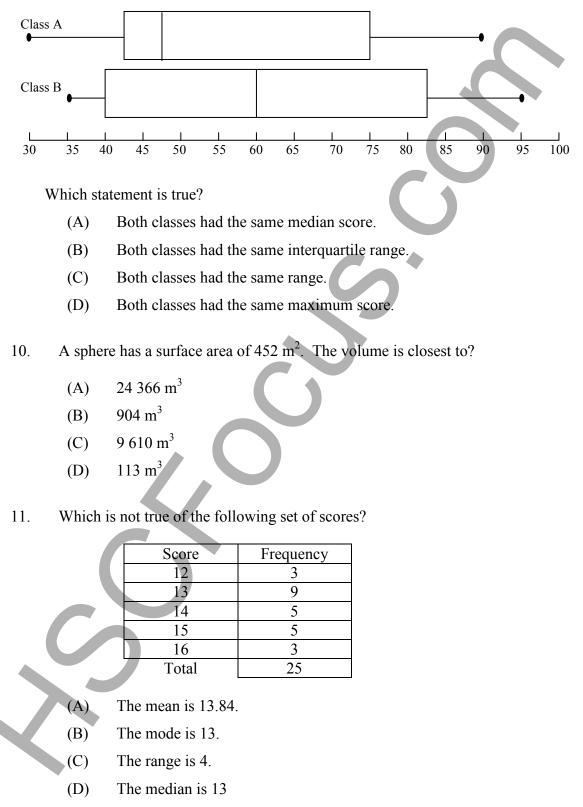
<u>140 + 5n</u> where *n* is the number of students going on the excursion.

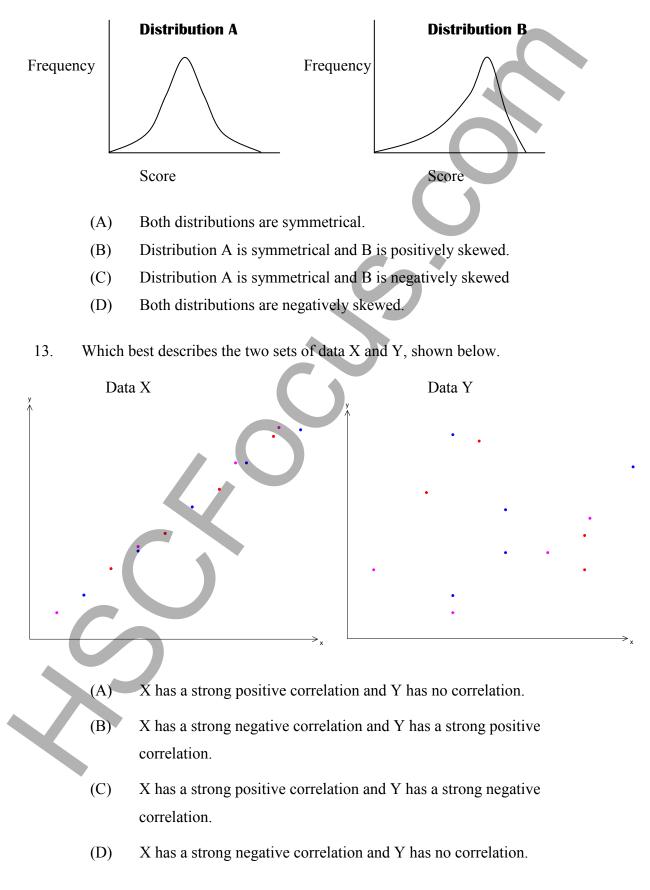

If the number of students going on the excursion increases from 35 to 40, what change does this make to the cost per student (C)?

(Answer to the nearest five cents)

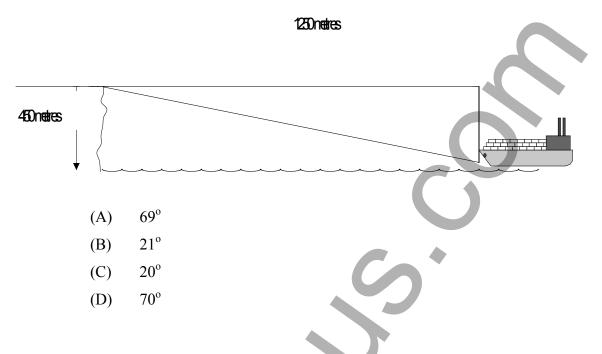
n

- (A) Each student pays fifty cents more.
- (B) Each student pays fifty cents less.
- (C) Each student pays twenty five cents less.
- (D) There is no change in the cost per student.

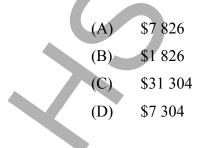

5. What is the area of the triangle shown? (Correct to 2 significant figures.)

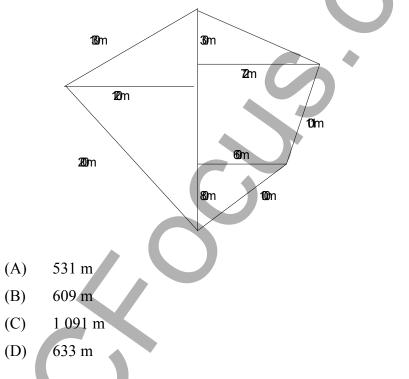

- 6. Jennifer is paid a wage of \$28.40 per hour for up to 8 hours per shift, then overtime at time and a half for the next two hours and double time for any further hours in that shift. In one shift she worked 12 hours. What would she be paid?
 - (A) \$454.40
 - (B) \$369.20
 - (C) \$340.80
 - (D) \$426.00
- 7. Jack works in sales and is paid a retainer which is equivalent to a salary of \$52 000 p.a. He also earns a commission of 1.5% of his sales. Last fortnight, his sales totalled \$45 200. What would be his pay for this fortnight?
 - (A) \$2 000.00
 - (B) \$2 678.00
 - (C) \$1159.00
 - (D) \$678.00
- 8. Given that $v^2 = u^2 + 2as$. If *u* is always positive, which is the correct formula for *u*?

(A)
$$u = \sqrt{v^2 + 2as}$$
 (B) $u = \sqrt{v^2 - 2as}$
(C) $u = v - 2as$ (D) $u = \sqrt{2as - v^2}$


9. The results gained by the students in two classes A and B on a test are shown below:

12. Which best describes the two distributions shown below.

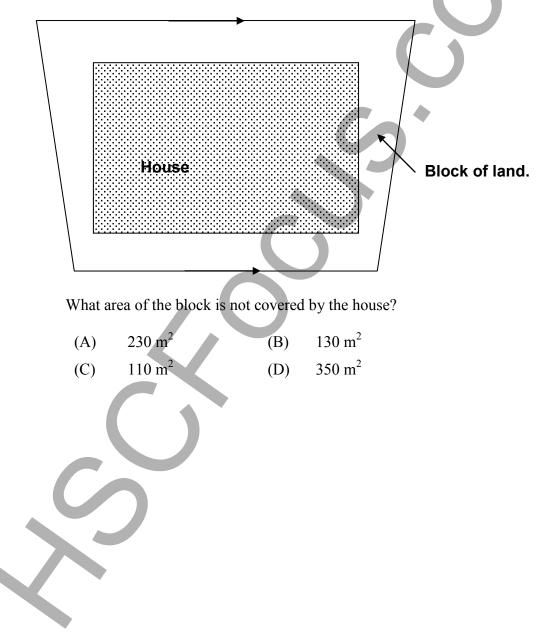

14. What is the angle of depression of the ship from the viewer on the cliff?


15. The following table shows the fortnightly repayments required to repay a personal loan at 11.5% p.a. for terms from 2 to 5 years.

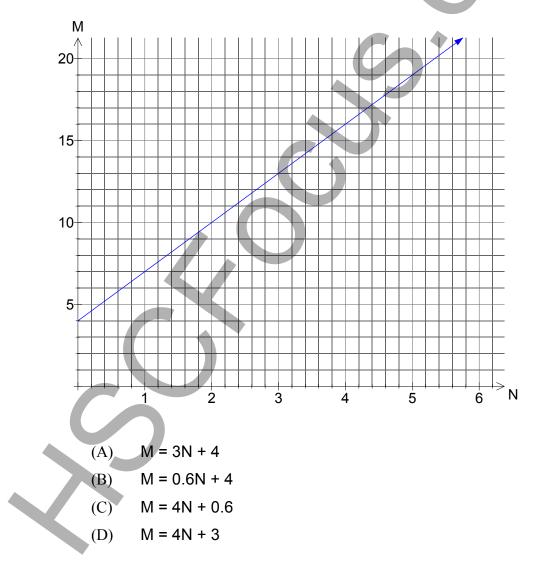
Amount	2 Years	3 Years	4 Years	5 Years
Borrowed				
\$12 000	\$269	\$190	\$151	\$127
\$16 000	\$358	\$253	\$201	\$170
\$20 000	\$447	\$316	\$251	\$212
\$24 000	\$536	\$379	\$301	\$254
\$26 000	\$581	\$411	\$326	\$275
\$30 000	\$670	\$474	\$376	\$317

Josie borrows \$24 000 over 4 years. How much interest does she pay?

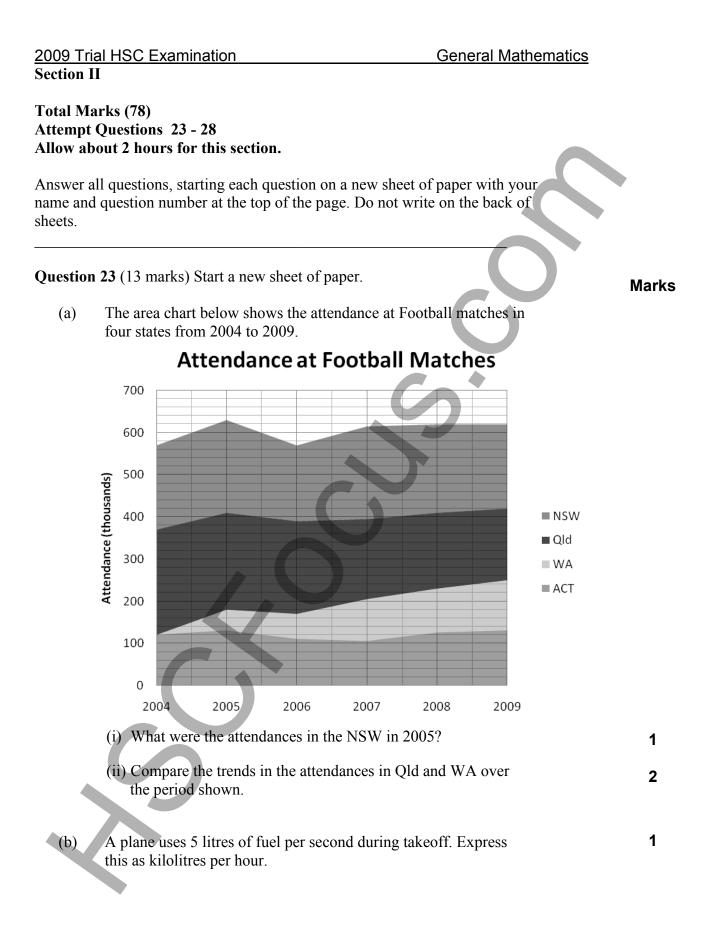
- 16. A child's puzzle has 40 pieces of which 25% are rectangular, and 15% are triangular. The remainder are other shapes. A piece is chosen at random from the puzzle. What is the probability that it is not triangular or rectangular?
 - (A) 0.6
 - (B) 0.4
 - (C) 0.75
 - (D) 0.85
- 17. A drawing of a block of land is completed from an offset survey. What is the perimeter of the block of land?



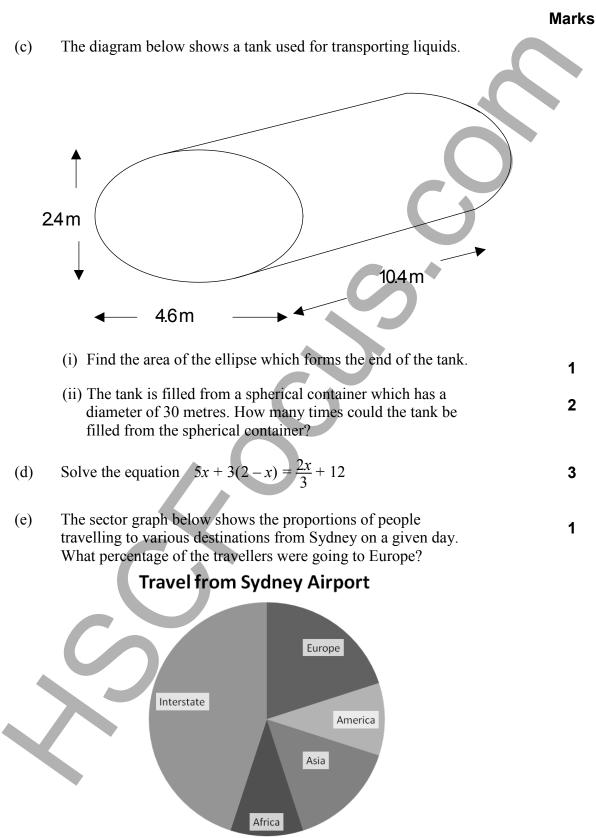
- 18. As part of a party trick, Joseph splits a standard deck of 52 cards into two piles. The first pile has the 12 cards which are marked K, Q or J, and the second pile has the 40 cards which include the Aces and the cards which are numbered 2 to 10. He draws two cards from the first pile and then three from the second and lays them out in a line in the order they are chosen. How many arrangements of the five cards on the table are possible?
 - (A) $12^2 \times 40^3$
 - (B) 12×11×10×40×39
 - (C) 12×11×40×39×38
 - (D) $12^3 \times 40^2$


19. John has worked out that the relationship between two variables *d* and *e*, can be expressed as $d = 2e^2 + k$, where *k* is a constant value that he is trying to find. He takes another measurement and finds that d = 16, when e = 2.5. What is the value of *k*?

(A)	- 9	(B)	2.5
(C)	13.5	(D)	3.5

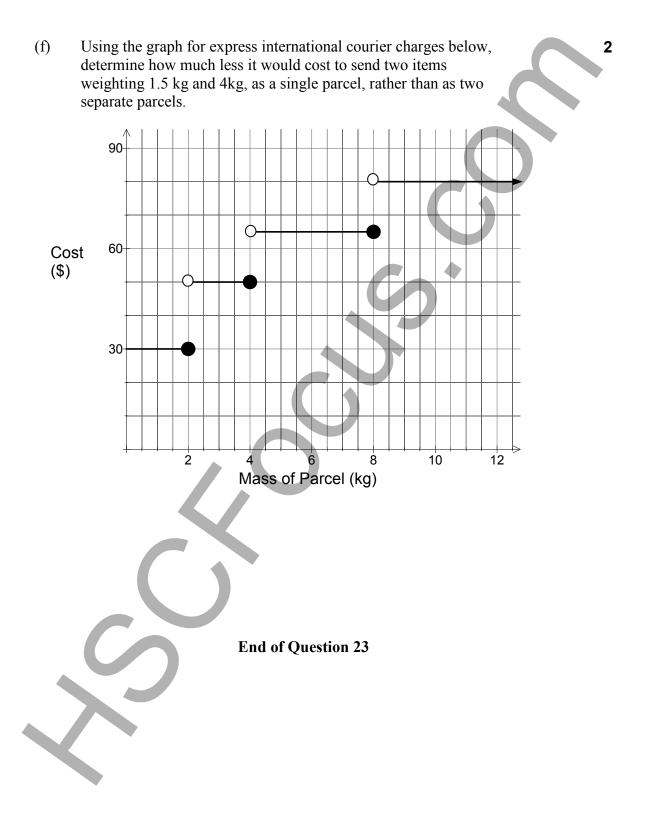

20. A scale drawing of a house, showing its position on the block of land on which it is to be built is shown below. The scale is 200:1.

- 21. Justine calculates the depreciation on her car which is five years old using the declining balance method and obtains a value of \$14 200 to the nearest hundred dollars. If its value was \$32 000 when new, what was the depreciation rate per annum?
 - (A) 55%
 - (B) 15%
 - (C) 85%
 - (D) 12%
- 22. The graph below shows the straight line relationship between two variables M and N. What is equation of the line?



End of Section 1

Question 23 continues on page 12


Question 23 (continued)

Question 23 continues on page 13

Question 23 (continued)

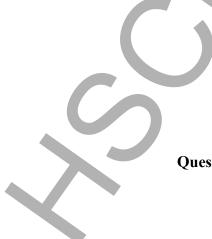
Marks

Marks

1

1

2


1

Question 24 (13 marks) Start a new sheet of paper.

- (a) Madison is paid a salary of \$46 800, and has \$480 per fortnight deducted from her pay in PAYG tax instalments.
 - (i) What is her fortnightly net pay?
 - (ii) She also has investments which earned her \$480.00 in the financial year and has tax deductions which total \$1 500. What is her taxable income?
 - (iii) She pays income tax on this taxable income calculated according to the table below, plus a Medicare levy of 1.5% of her taxable income. Calculate her tax due for the financial year?

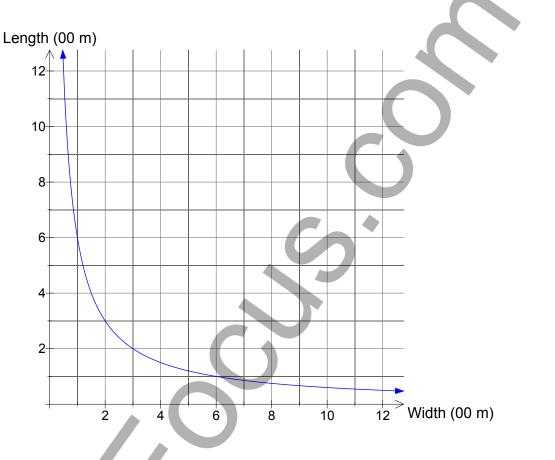
Taxable income	Tax payable
\$0 - \$12 000	Nil
\$12 001 - \$30 000	Nil plus 30 cents for each \$1 over \$12 000
\$30 001 - \$45 000	\$5400 plus 40 cents for each \$1 over \$30 000
\$45 001 - \$60 000	\$11 400 plus 50 cents for each \$1 over \$45 000
over \$60 000	\$18 900 plus 55 cents for each \$1 over \$60 000

(iv) Determine her tax refund or tax bill for the financial year.

Question 24 continues on page 15

Question 24 (continued)

(c)


Saskia is a business consultant and has developed a method of (b) predicting the success or failure of a small business. The results of her predictions for fifty businesses are shown in the table below.

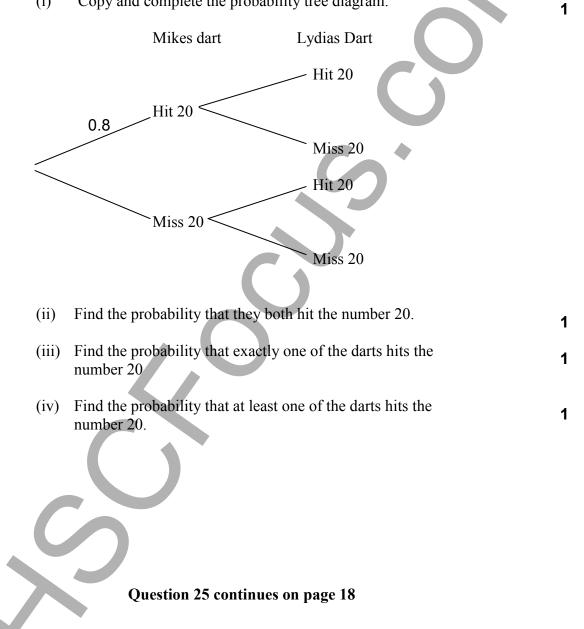
	Predicted Success	Predicted Failure	Total
Actual Success	28	10	38
Actual Failure	4	*	12
Total	32	18	50

	(i)	What value should appear where the $*$ symbol is shown?	1
	(ii)	If a business is chosen at random, what is the probability that it succeeded?	1
	(iii)	If Saskia predicted success for a business, what is the probability that it succeeded?	1
	(iv)	Was she better at predicting success of failure? Explain your answer.	2
(c)		us borrows \$25 000 at 12% p.a. repaid in monthly ments over 6 years.	
	(i)	Use the present value formula to find the amount of each monthly instalment.	2
	(ii)	How much does he pay in interest?	1
		End of Question 24	

Question 25 (13 marks) Start a new sheet of paper.

(a) Farmer Nick wishes to enclose a paddock with an area of 6 hectares. The graph shows the possible dimensions.

(i) Is the curve shown an exponential graph, a parabola or a 1 hyperbola? 1 If the width of the paddock was 100m, what was the (ii) length? If the paddock were to be a square, what would be its (iii) 1 length? 1 (iv) Which would cost more to fence, a paddock that was 800 m wide, or one that was 300 m wide? Justify your answer using the graph and relevant calculations.


Question 25 continues on page 17

Marks

Marks

Question 25 (continued)

- (b) Lydia and Mike play a game of darts. Mike has a 0.8 chance of hitting the number he aims at and Lydia has a 0.6 chance of hitting the number she aims at. They each throw a single dart at the board, both aiming at the number twenty.
 - (i) Copy and complete the probability tree diagram.

Question 25 (continued)

Marks

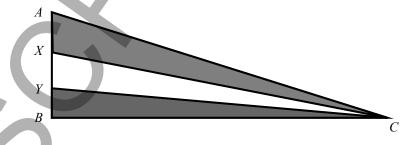
(c) Xanthe and Yasmin are on a bushwalk. At one stage they become separated. They contact one another by mobile phone and realise they can both see the tops of two towers A and B which are 1.5 km apart. They take bearings with their compasses and mark the information below on their maps. They decide to meet up at tower B. Yasmin's Map Xanthe's Map A A Ъ 34 **15**km **15**m ጽ В В How far must Yasmin walk to get to the base of Tower B? (i) 2 (ii) How far must Xanthe walk to get to the base of Tower B? 2 (iii) If Tower B is on a bearing 160° from Tower A, what 1 bearing must Yasmin walk along to reach Tower B? **End of Question 25**

Question	26 (13	B marks) Start a new sheet of paper.	Marks
(a)	There	e are 16 players in the training squad for a volleyball team.	1
	(i)	The coach chooses 2 players to be the captain and vice captain. How many arrangements of captain and vice captain are possible?	
	(ii)	Four players are chosen to make up the rest of the team. How many combinations of the four players are possible after the captain and vice captain have been chosen?	1
(b)	girls.	11 has 40 boys and 50 girls and Year 12 has 35 boys and 45 A student is chosen at random from each year. What is the ability that the students will be :	
	(i)	Two boys?	
	(ii)	A boy and a girl?	1
(c)	be ca	mputer system is purchased for \$5 800. Its depreciation can lculated using a straight line depreciation of \$1 200 p.a. or ing a declining balance rate of 30% p.a.	1
	(i)	Find the value of the system after 6 years using the declining balance method.	2
	(ii)	Which method will give the system the greater value after 3 years?	2
(d)		etball NSW conducts a survey of its players across the state, a sample of 250 players.	
	(i)	If the Western Region has 8% of the basketball players in NSW, how many players from the Western Region should be included in the sample?	1
	(ii)	The stem and leaf plot below shows the results for the	
	Ç	question on the heights (in cm) of players from the Southern Region	3
	1 1 1	7 2 4 8 8 9 8 3 4 5 5 8 9 9 9 0 3 6 8 8 0 0 2	
	E	Draw a box and whisker plot from this data.	
	(iii)	Find the standard deviation of this sample to 2 decimal places.	1

Question 27 (13 marks) Start a new sheet of paper.

Zucsu	011 27 (13	marks) Sta	it a new sheet of paper.		Marks
(a)	the 13	5 th August h	cross the Pacific Ocean. er position is $(0^{\circ}, 170^{\circ}\text{E})$ $(0^{\circ}, 150^{\circ}\text{W}).$	At 6:30 am on Saturday and she is heading for	
	(i)	•	that she can do so on the ill she need to sail (in Na		2
	(ii)	At a speed take?	l of 15 knots, how many	days will the journey	1
	(iii)	brother on	n on Saturday the 15 th A Fantasy Island. What is kes the call?		2
(b)	cash		plasma TV and paid a de 750, and monthly repayn rs.		
	(i)	How much the TV?	h extra did she pay comp	ared to paying cash for	2
	(ii)	What flat	rate of interest per annur	n was she charged?	1
(c)	squa illun units	re of the dis	light on a movie screen v stance from the projector en the projector is 40 m t e illumination when the p	to the screen. If the from the screen is 25	3
(d)	inter off i	est rate of 1	dit card with no interest 4% p.a. calculated daily by July and makes the foll by.	She had paid her card	
	2 nd Ji 16 th 23 rd 26 th 29 th	luly luly luly	Cookpot DVDs Petrol Makeup Dress	\$ 68.00 \$ 53.50 \$ 40.00 \$ 105.50 \$ 150.80	
			per credit card bill in full		2

Ebony pays her credit card bill in full on the 5th of August. How much interest does she pay?


End of Question 27

Question 28 (13 marks) Start a new sheet of paper.

(a) The scores of 3 students on their History and Geography assessments are given below, along with the mean and standard deviation of each assessment.

Student	History	Geography
Ally	72	67
Bella	66	72
Catalina	85	63
Mean	60	55
Standard Deviation	12	8

- Convert Ally's History and Geography marks to z scores and determine which result was better in comparison to the other students in the course.
- (ii) What percentage of students scored higher marks than Catalina on the Geography assessment?
- (iii) The top 2.5% of students on each assessment are invited to a talented students' day. Which students would be invited, and on which result would their invitation be based? Justify your answer mathematically.
- (b) The triangular banner shown is in three sections. The triangle *ABC* is right angled with BC = 120 cm and AB = 45 cm. The distances *AX*, *XY* and *YB* are equal and $\angle XYC = 95^{\circ}$.

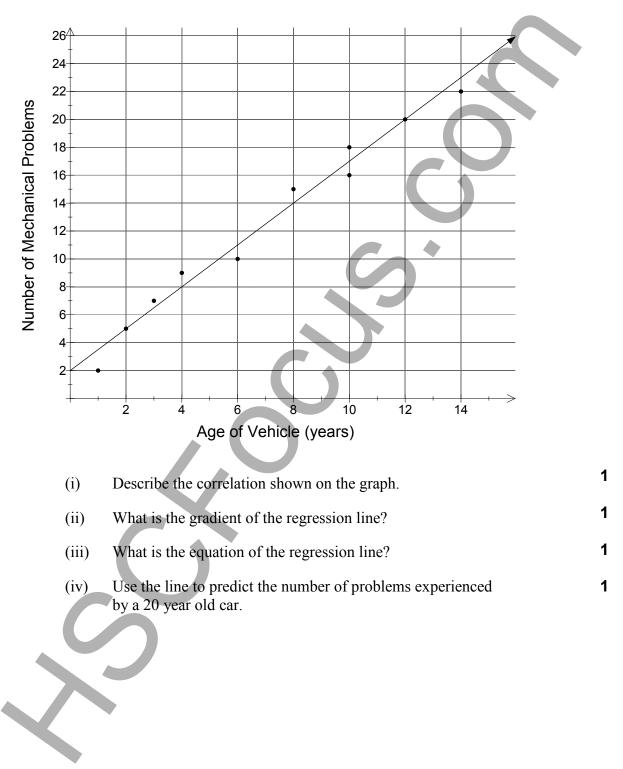
- (i) Find the distance YC correct to 3 significant figures.
 - (ii) Hence find the area of the triangle *XYC*.

(iii)What percentage of the area of the banner is the triangle XYC.

Question 28 continues on page 22

Marks

2


1

2

1

1

Question 28 (continued)

End of Examination

FORMULAE SHEET

Area of an annulus $A = \pi (R^2 - r^2)$ R = radius of outer circle r = radius of inner circle

Area of an ellipse

 $A = \pi a b$

a =length of semi-major axis

b =length of semi-minor axis

Area of a sector

$$A = \frac{\theta}{360}\pi r^2$$

 θ = number of degrees in central angle

Arc length of a circle

$$l = \frac{\theta}{360} 2\pi r$$

 θ = number of degrees in central angle

Simpson's rule for area approximation

$$A \approx \frac{h}{3} \left(d_f + 4d_m + d_l \right)$$

 $h = \text{distance between successive} \\ \text{measurements}$

 $d_f = \text{first measurement}$

- $d_m =$ middle measurement
- $d_l = \text{last measurement}$

Surface area $A = 4\pi r^2$ Sphere $A = 2\pi r h + 2\pi r^2$ Closed cylinder r = radiush = perpendicular heightVolume Cone $V = \pi r^2 h$ Cylinder Pyramid Ah $V = \frac{4}{3}\pi r^3$ Sphere radius perpendicular height area of base Sine rule b $\frac{-a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ a Area of a triangle

$A = \frac{1}{2}ab\sin C$

Cosine rule

 $c^2 = a^2 + b^2 - 2ab\cos C$

or

$$\cos C = \frac{a^2 + b^2 - c^2}{2ab}$$

Simple interest

I = Prn

- P = initial quantity
- r = percentage interest rate per period, expressed as a decimal
- n = number of periods

Compound interest

 $A = P(1+r)^n$

- A = final balance
- P = initial quantity
- n = number of compounding periods
- r = percentage interest rate per compounding period, expressed as a decimal

Future value (A) of an annuity

$$A = M\left\{\frac{(1+r)^n - 1}{r}\right\}$$

M = contribution per period, paid at the end of the period

Present value (N) of an annuity

$$N = M \left\{ \frac{(1+r)^{n} - 1}{r(1+r)^{n}} \right\}$$

or

$$N = \frac{A}{(1+r)^n}$$

Straight-line formula for depreciation

$$S = V_0 - Dn$$

- S = salvage value of asset after *n* periods
- V_0 = purchase price of the asset
- D = amount of depreciation apportioned per period

$$n =$$
 number of periods

Declining balance formula for depreciation

$$S = V_0 (1-r)^n$$

- S = salvage value of asset after *n* periods
- r = percentage interest rate per period, expressed as a decimal

Mean of a sample

$$\overline{x} = \frac{\sum x}{n}$$
$$\overline{x} = \frac{\sum fx}{\sum f}$$

 $\overline{x} = \text{mean}$

- x = individual score
- n = number of scores
- f = frequency

Formula for a z-score

$$z = \frac{x-z}{z}$$

s = standard deviation

Gradient of a straight line

 $m = \frac{\text{vertical change in position}}{\text{horizontal change in position}}$

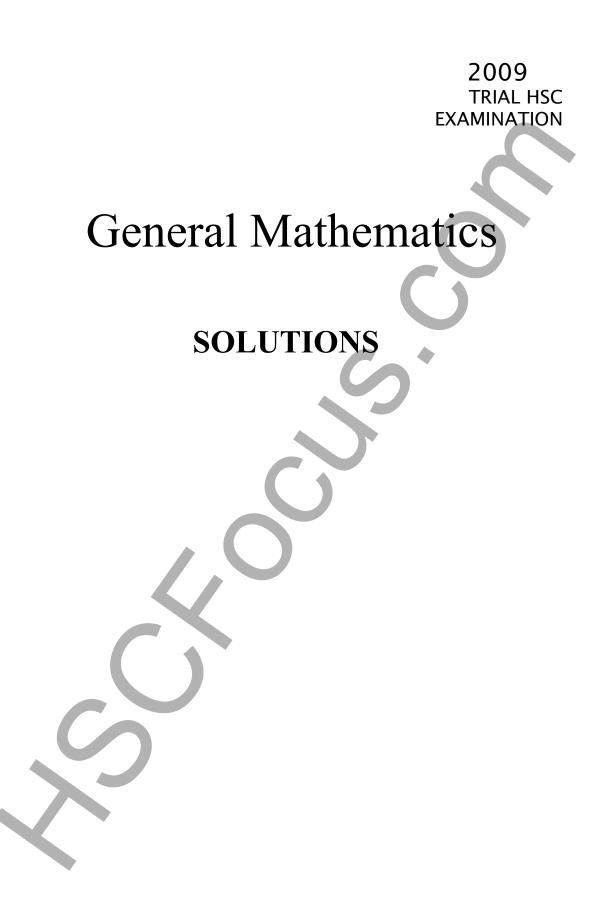
Gradient-inte cept form of a straight line

$$y = mx + b$$

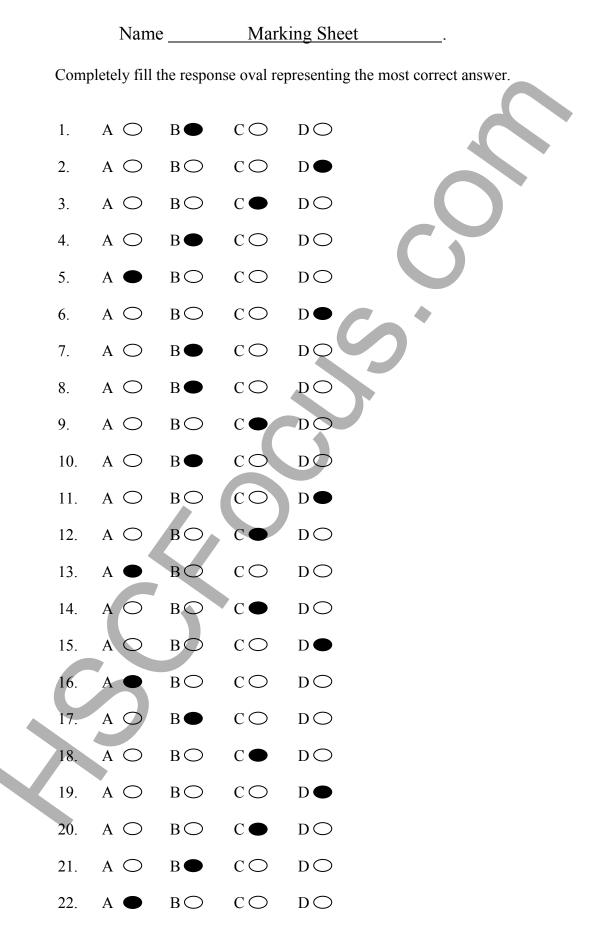
- m = gradient
- b = y-intercept

Probability of an event

The probability of an event where outcomes are equally likely is given by:

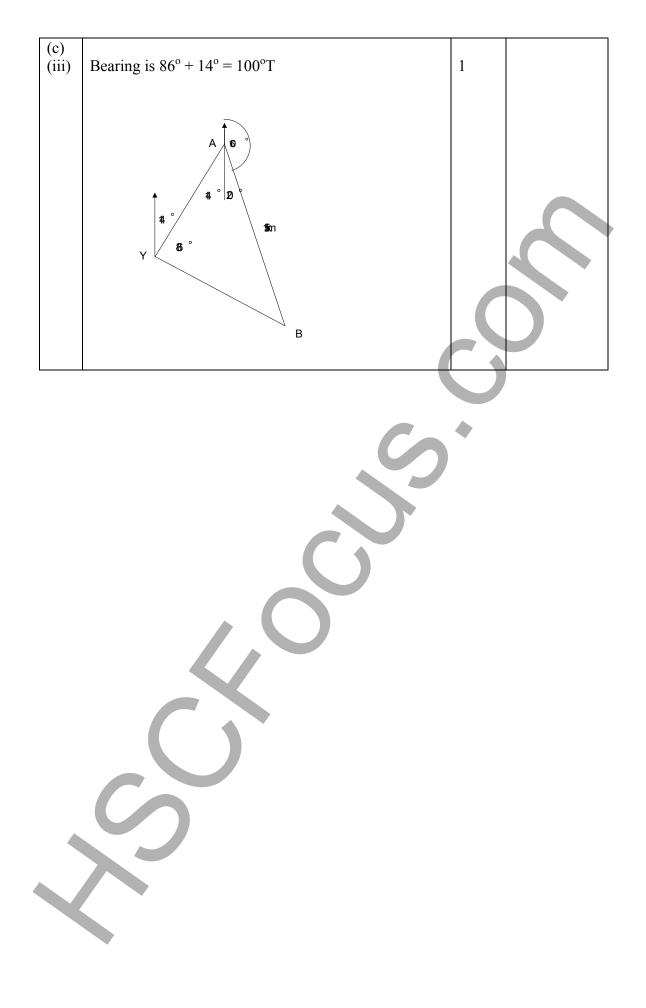

 $P(\text{event}) = \frac{\text{number of favourable outcomes}}{\text{total number of outcomes}}$

General Mathematics Trial HSC Examination 2009


Multiple Choice Answer Sheet

Name Completely fill the response oval representing the most correct answer, 1. $A \bigcirc$ ВО СО $D \bigcirc$ АO ВО СО 2. $D \bigcirc$ $A \bigcirc B \bigcirc C \bigcirc$ $D \bigcirc$ 3. 4. $A \bigcirc B \bigcirc C \bigcirc$ DO $A \bigcirc$ ВО СО 5. $D \bigcirc$ 6. $A \bigcirc B \bigcirc$ СО $D \bigcirc$ 7. $A \bigcirc B \bigcirc$ СО $D \bigcirc$ $A \bigcirc B \bigcirc$ СО DO 8. A O BO $C \bigcirc$ DO 9. $A \bigcirc$ ВО СО DO 10. $D \bigcirc$ CO АO ВО 11. DO BO 12. АO СО ВO CO 13. $A \bigcirc$ $D \bigcirc$ CO 14. $A \bigcirc$ ВО $D \bigcirc$ BO CO 15. $A \bigcirc$ $D \bigcirc$ A O BO СО $D \bigcirc$ 16. A O BO СО $D \bigcirc$ 17. A O ВО СО $D \bigcirc$ 18. 19. $A \bigcirc$ СО ВО $D \bigcirc$ АО СО 20. ВО $D \bigcirc$ 21. $A \bigcirc$ ВО СО $D \bigcirc$ 22. $A \bigcirc$ ВО СО $D \bigcirc$

WESTERN REGION


Multiple Choice Answer Sheet

<u>`</u>	tion 23 HSC Trial Examination-	2009	
Part	Solution	Marks	Comment
(a)	Attendance in NSW = $630\ 000 - 410\ 000$	1	
(i)	=220 000		
(a)	Queensland had the highest attendance of any state in	2	1 for
(ii)	2004 then decreased over the following years, while		decrease in
(11)	WA only began in 2005 and grew steadily each year		Qld and 1 for
	after that.		increase in
			WA
(b)	$5 \text{ L/s} = 5 \times 60 \times 60 \text{ L/h} = 18000 \text{ L/h}$	1	
	$= 18000 \div 1000 \text{ kL}/\text{h}$		
	= 18 kL /h		
(c)	$Area = \pi ab$	1	
(i)	$=\pi \times 1.2 \times 2.3$		
	$= 8.7 m^2$		
(c)	$\frac{-6.7 m}{Volume tank} = Ah$	2	
(ii)	$= 8.7 \times 10.4$		
	$= 90.2 m^3$		
	Volume sphere $=\frac{4}{3}\pi r^3$		
	$=\frac{4}{3}\times\pi\times(15)^3$		
	$= 14 137 m^3$		
	Number of refills = $14\ 137\ \div\ 90.2$		
	= 156.77		
	= 156 complete refills		
(d)	$5x + 3(2 - x) = \frac{2x}{3} + 12$	3	3 marks for
	3x + 3(2 - x) = 3		complete
	5x + 6 - 2x - 2x + 12		solution
	$5x + 6 - 3x = \frac{1}{3} + 12$		
	2		2 marks if 1
	$2x + 6 = \frac{2x}{2} + 12$		or 2 simple
	3		errors made
	$5x + 6 - 3x = \frac{2x}{3} + 12$ $2x + 6 = \frac{2x}{3} + 12$ $2x = \frac{2x}{3} + 6$		1 mark if
	6x = 2x + 18		some correct
			manipulation
	4x = 18		done
(e)	x = 4.5 Angle =72°	1	
	-		
	Percentage $=\frac{72}{360} \times 100$		
	= 20%		
(f)	Cost of separate parcels = $30.00 + 50.00$		2 marks for
	= \$80.00		correct
	Cost of single parcel (5.5 kg) = \$65.00	2	answer
	Saving = $$15.00$		1 mark if
	$1.34 \times 109 = .013 \times 100$		single error

Ques	tion 24 HSC Trial Examination-	2009	
Part	Solution	Marks	Comment
(a)	Fortnightly net pay = $46\ 800\ \div 26\ -\ 480$	1	
(i)	= \$1 320		
(a)	Taxable income = $46\ 800\ +\ 480\ -\ 1\ 500$	1	
(ii)	= \$45 780		
(a)	Income tax = $11400 + 0.50 \times 780$	2	2 marks for
(iii)	= \$11 790		final result
	Medicare levy = 0.015×45780		1 mark if
	= \$686.70		Income tax
	Tax due = $686.70 + 11790$		or Medicare
	= \$12 476.70		is correct
(a)	$Tax Paid = 480×26	1	
(iv)	= \$12 480		
	Tax Refund = $$12480 - 12476.70		
	= \$3.30 refund		
(b)	12 - 4 = 18 - 10 = 8	1	
(i)			
(b)	$P(Success) = \frac{38}{50}$	1	
(ii)			
	$=\frac{19}{25}=0.76$		
(b)	$P(\text{Success given predicted success}) = \frac{28}{32}$	1	
(iii)	1 (Success given predicted success) 32		
	$=\frac{7}{8}=0.875$		
(h)	, , , , , , , , , , , , , , , , , , ,	2	1 for
(b) (iv)	$P(\text{Failure given predicted failure}) = \frac{8}{18}$	2	working put
(11)			failure
	$=\frac{4}{9}=0.444$		1 for reason
	She is better at predicting success as she was right		
	87.5% of the time when she predicted success but only 44.49 (when she mediated failure)		
(c)	44.4% when she predicted failure.	2	1 for sub in
(i)	$N = M \left\{ \frac{(1+r)^{n} - 1}{r(1+r)^{n}} \right\}$ 25 000 = $M \left\{ \frac{(1.01)^{72} - 1}{0.01(1.01)^{72}} \right\}$	2	formula
	(r(1+r))		correctly
	$25000 = M \left\{ \frac{(1.01)^{72} - 1}{2} \right\}$		1 for
	$0.01(1.01)^{72}$		calculating
	$25\ 000\ =\ 51.1\ M$		answer
	$M = \frac{25000}{51.1}$		
	= \$488.75		
(c)	Interest = $488.75 \times 72 - 25\ 000$	1	Accept
(ii)	= 35 190 - 25 000		10 191
	= \$10 190		

Quest	tion 25 HSC Trial Examination-	2009	
Part	Solution	Marks	Comment
(a)	Hyperbola	1	
(i)	(00 m	1	
(a) (ii)	600 m	1	
(a)	240 to 250 m	1	
(iii)			
(a)	Width 800, length 75, perimeter 1750m	1	
(iv)	Width 300, length 200 perimeter 1000m The 300 m width paddock would be cheaper to fence.		
(b)			
(i)	Mikes dart Lydias Dart		
	0.6	Hit 20	1
	0.8 Hit 20 0.4		
		Miss 20	
	0.2 0.6	Hit 20	
	Miss 20 0.4		
		Miss 20	
(b)	$P(HH) = 0.8 \times 0.6$	1	
(ii)	= 0.48		
(b)	$P(HM) + P(MH) = 0.8 \times 0.4 + 0.2 \times 0.6$	1	
(iii)	= 0.32 + 0.12		
	= 0.44		
(b) (iv)	P (at least one H) = 0.48 + 0.44	1	
(iv)	= 0.92		
	OR P (at least one H) = 1 - P (M M)		
	$= 1 - 0.2 \times 0.4$		
I			
(c)	= 0.92 YB 1.5	2	1 for sub in
(i)	$\overline{\sin 34^{\circ}} \overline{\sin 86^{\circ}}$		sine rule
	$YB = \frac{1.5}{\sin 96^{\circ}} (\sin 34^{\circ})$		1 for
	SIII 80		calculation
(a)	= 0.841 km	2	1 for sub in
(c) (ii)	$XB^{2} = 2.4^{2} + 1.5^{2} - 2 \times 2.4 \times 1.5 \times \cos 75^{\circ}$		cosine rule
	= 6.15		
	XB = 2.5 km		1 for
			calculation

Quest	tion 26 HSC Trial Examination-	2009	
Part	Solution	Marks	Comment
(a) (i)	No combinations = $16 \times 15 = 240$ combinations	1	
(a)	Combinations of 4 players from 14 players = $14 \times 13 \times 12 \times 11 = 24024$ combinations	1	
(ii)	Order isn't important, so arrangements $4 = 4 \times 3 \times 2 \times 1 = 24$		
	So number of ways of selecting rest of team = $24024 \div 24 = 1001$		
(b) (i)	$P(BB) = \frac{40}{90} \times \frac{35}{80} = \frac{7}{36}$	1	
(b)	P(B and G) = P(BG) + P(GB)	1	
(ii)	$= \frac{40}{90} \times \frac{45}{80} + \frac{50}{90} \times \frac{35}{80}$ $= \frac{71}{144}$		
(c)	$S = V_0 (1 - r)^n$	2	
(i)	$= 5800(1-0.3)^6$		
	= \$682.36		
(c) (ii)	$S = V_0(1-r)^n OR S = V_0 - Dn$ = 5800(1-0.3) ³ = 5800 - 1 200 × 3 = \$1989.40 = \$2 200.00	2	
(d)	Straight line gives greater value Number of players from Western = 8% of 250	1	
(i)		1	
(d) (ii)	$= 20 \text{ players}$ $Min Ext = 166 Q_1 = 178 Q_2(median) = 185 Q_3 = 193 Upper Ext = 20$	2 3	1 each for Extremes Median Quartiles
(d)	Sample $SD = 10.85$	1	
<u>(iii)</u>			1

Questi	on 27 HSC Trial Examination-	2009	
Part	Solution	Marks	Comment
(a)	Angular distance = $10^{\circ} + 30^{\circ} = 40^{\circ}$	2	1 for Ang dist
(i)	Distance = $40 \times 60 M$		1 for dist
	= 2400 M		
(a)	Time = distance/speed	1	
(ii)	$=\frac{2400}{15}$		
	= 160 hours		
	$= 6\frac{2}{3}$ days or 6 days 16hrs		
(a)	40° longitude difference $\Rightarrow 40 \times 4$ minutes time difference	2	1 for time
(iii)	FI is 2 hrs and 40 min later and on other side of Date line		1 for date
	Time on FI is $6:30 + 2:40 = 9:10$ am on Friday 14th August.		1 Ioi dute
(b)	Deposit $= 0.2 \times 1750$	2	1 for
(i)	= \$350.00		payments
	$Payments = 24 \times \$95.70$		
	= \$2 296.80		1 for extra
	Total Paid = \$2 296.80 + \$350.00		paid
	= \$2 646.80		
	Interest $=$ \$2 646.80 - 1750.00		
	= \$896.80		
(b)	Interest Rate = $\frac{\$896.80}{1400} \div 2$	1	
(ii)	interest Rate $-\frac{1400}{1400} \div 2$		
	= 32% p.a.		
(c)	$I \propto \frac{1}{d^2}$	3	1 for equation
	d		
	$I = \frac{k}{2}$		1 for value of
	d^2		k
	$25 = \frac{k}{10^2}$		
	40		
	$k = 40\ 000$		
	$I = \frac{40000}{2}$		1 for answer
	d^2		
<u>~</u>	= <u>40000</u>		
	$-\frac{1}{50^2}$		
	= 16 metres		
		•	•

(d)	Rate per day =			2 Allow for
	0.0003835			rounding
	Amount	Days Interest	Interest to 5 th Aug	errors
	68.00	34	0.8867	Accept \$2.25 -
	53.50	20	0.4104	\$2.35
	40.00	13	0.1995	
	105.50	10	0.4047	
	150.80	7	0.4049	
		Total Interest =	\$ 2.31	

(a) (a) (b) (c) (a) (c) (c) (c) (c) (c) (c) (c) (c		on 28 HSC Trial Examination-	2009 Marks	Comment
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
Geography result is better.1(a) (ii) $Z \operatorname{score} = \frac{63 - 55}{8} = 1$ 68% lie between 1 and -1 34% lie between 0 and 1 16% greater than 11(a) (a) 5% lie outside -2 and 2 so 2.5% lie above 2. Hist z score of $2 = 60 + 2 \times 12 = 84$ (1 above) Geog z scofe of $2 = 55 + 2 \times 8 = 71$ (1 above) 2 students would be invited, Catalina on Hist and Bella on Geog21 for and 1 identi stude above(b) (i) $YC^2 = 15^2 + 120^2$ $= 14625$ $YC = \sqrt{14625}$ $= 121 \operatorname{cm}(3 \ s.f.)$ 1(b) (ii) $Area = \frac{1}{2} ab \sin C$ $= 904 \operatorname{cm}^2$ 21 for substi substi or substi or substi l for(b) (iii) $Area \Delta ABC = \frac{1}{2} \times 120 \times 45 = 2700 \operatorname{cm}^2$ Percentage $= \frac{904}{2700} \times 100 = 33.5\%$ 1(c) (c)Gradient = $\frac{12}{8} = 1.5$ 1(c) (ii) $N = 1.5Y \pm 2$ or equivalent with other variables.1		0	2	1 finding each z score
(a) (ii) Z score = $\frac{63-55}{8} = 1$ (iii) Z score = $\frac{63-55}{8} = 1$ (iii) $1 = 48\%$ lie between 1 and -1 34% lie between 0 and 1 16% greater than 1 (a) 5% lie outside -2 and 2 so 2.5% lie above 2. (iii) Hist z score of $2 = 60 + 2 \times 12 = 84$ (1 above) Geog z score of $2 = 55 + 2 \times 8 = 71$ (1 above) 2 students would be invited, Catalina on Hist and Bella on Geog (b) $YC^2 = 15^2 + 120^2$ = 14625 $YC = \sqrt{14625}$ = 121 cm (3 s. f.) (b) $Area = \frac{1}{2}ab\sin C$ $= \frac{1}{2}\times15\times121\times\sin95^{\circ}$ $= 904 \text{ cm}^2$ (c) A strong positive correlation. (i) $Area = \frac{12}{8} = 1.5$ (ii) $Area = \frac{12}{8} = 1.5$ (iii) $Area = \frac{12}{8} = 1.5$ (c) $N = 1.5Y \pm 2$ or equivalent with other variables. 1		Hist $z_H = \frac{72 - 60}{12} = 1$		
(ii) (iii)) (iii) (iii) (iii)) (iii) (iii) (ii)) (ii)) (ii))		Geography result is better.		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $)	$Z \text{ score} = \frac{63 - 55}{8} = 1$	1	
16% greater than 11(a)5% lie outside -2 and 2 so 2.5% lie above 2. Hist z score of 2 = 60 + 2 × 12 = 84 (1 above) Geog z score of 2 = 55 + 2 × 8 = 71 (1 above) 2 students would be invited, Catalina on Hist and Bella on Geog21 for and 1 identi stude above(b) $YC^2 = 15^2 + 120^2$ = 14625 $YC = \sqrt{14625}$ = 121 cm (3 s. f.)4(b) $Area = \frac{1}{2} ab \sin C$ = 904 cm²21 for substi substi above(b) $Area \Delta ABC = \frac{1}{2} \times 120 \times 45 = 2700 \text{ cm}^2$ Percentage $= \frac{904}{2700} \times 100 = 33.5\%$ 1(c)A strong positive correlation. (i)1(c) $M = 1.5Y + 2$ or equivalent with other variables.1		68% lie between 1 and -1		
(a) 5% lie outside -2 and 2 so 2.5% lie above 2. (iii) Hist z score of $2 = 60 + 2 \times 12 = 84$ (1 above) Geog z score of $2 = 55 + 2 \times 8 = 71$ (1 above) 2 students would be invited, Catalina on Hist and Bella on Geog (b) $YC^2 = 15^2 + 120^2$ = 14625 $YC = \sqrt{14625}$ = 121 cm (3 s. f.) (b) $Area = \frac{1}{2} ab \sin C$ $= \frac{1}{2} \times 15 \times 121 \times \sin 95^{\circ}$ $= 904 \text{ cm}^2$ (c) A strong positive correlation. (i) $Area = \frac{12}{8} = 1.5$ (c) $N = 1.5Y + 2$ or equivalent with other variables. (a) $Area = \frac{12}{8} = 1.5$ (b) $Area = \frac{12}{8} = 1.5$ (c) $N = 1.5Y + 2$ or equivalent with other variables. (c) $N = 1.5Y + 2$ or equivalent with other variables.				
iii)Hist z score of $2 = 60 + 2 \times 12 = 84$ (1 above) Geog z scoré of $2 = 55 + 2 \times 8 = 71$ (1 above) 2 students would be invited, Catalina on Hist and Bella on Geogand 1 identi stude above aboveb) $YC^2 = 15^2 + 120^2$ $= 14625$ $YC = \sqrt{14625}$ $= 121 \text{ cm} (3 \text{ s. f. })$ 1b) $Area = \frac{1}{2} ab \sin C$ $= 904 \text{ cm}^2$ 2c) $Area \Delta ABC = \frac{1}{2} \times 120 \times 45 = 2700 \text{ cm}^2$ $Percentage = \frac{904}{2700} \times 100 = 33.5\%$ 1c) $A strong positive correlation.1i)Gradient = \frac{12}{8} = 1.5H = 1.5Y + 2 or equivalent with other variables.1$		16% greater than 1		
Geog z scofe of $2 = 55 + 2 \times 8 = 71$ (1 above)identi stude above2 students would be invited, Catalina on Hist and Bella on Geogidenti stude above(b) (i) $YC^2 = 15^2 + 120^2$ $= 14625$ $YC = \sqrt{14625}$ $= 121 \text{ cm } (3 \text{ s. } f.)$ 1(b) (ii) $Area = \frac{1}{2} ab \sin C$ $= 904 \text{ cm}^2$ 21 for substr substr $= \frac{1}{2} \times 15 \times 121 \times \sin 95^{\circ}$ $= 904 \text{ cm}^2$ 1(b) (iii) $Area \Delta ABC = \frac{1}{2} \times 120 \times 45 = 2700 \text{ cm}^2$ Percentage $= \frac{904}{2700} \times 100 = 33.5\%$ 1(c) (ii) $A \text{ strong positive correlation.}$ (iii)1(c) (iii) $M = 1.5Y + 2$ or equivalent with other variables.1	·		2	1 for z scores
$\begin{array}{c c} 2 \text{ students would be invited, Catalina on Hist and Bella} \\ \text{on Geog} \\ \hline \\ 2 \text{ students would be invited, Catalina on Hist and Bella} \\ \text{on Geog} \\ \hline \\ \hline \\ \hline \\ \\ \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \hline \hline \\ \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \\$	i)	Hist z score of $2 = 60 + 2 \times 12 = 84$ (1 above)		and 1 for
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				identifying
(b) $YC^2 = 15^2 + 120^2$ (1) $YC = \sqrt{14625}$ (1) (i) $Area = \frac{1}{2}ab\sin C$ 2 1 for substr (ii) $Area = \frac{1}{2}ab\sin C$ 2 1 for substr (iii) $Area = \frac{1}{2}ab\sin C$ 2 1 for substr (iii) $Area = \frac{1}{2}ab\sin C$ 1 for substr 1 for substr (iii) $Area \Delta ABC = \frac{1}{2} \times 120 \times 45 = 2700 \text{ cm}^2$ 1 for substr 1 for substr (b) $Area \Delta ABC = \frac{1}{2} \times 120 \times 45 = 2700 \text{ cm}^2$ 1 for substr 1 for substr (iii) $Area \Delta ABC = \frac{1}{2} \times 120 \times 45 = 2700 \text{ cm}^2$ 1 for substr 1 for substr (c) A strong positive correlation. 1 1 for substr 1 for substr (i) $M = 1.5Y + 2$ or equivalent with other variables. 1 1 for substr		· · · · · · · · · · · · · · · · · · ·		students
(i) $= 14625$ $YC = \sqrt{14625}$ $= 121 \text{ cm } (3 \text{ s. f.})$ (ii) $Area = \frac{1}{2} ab \sin C$ $= \frac{1}{2} x 15 \times 121 \times \sin 95^{\circ}$ $= 904 \text{ cm}^{2}$ (b) $Area \Delta ABC = \frac{1}{2} \times 120 \times 45 = 2700 \text{ cm}^{2}$ (c) $A \text{ strong positive correlation.}$ (c) $A \text{ strong positive correlation.}$ (c) $M = 1.5Y + 2 \text{ or equivalent with other variables.}$ (c) $N = 1.5Y + 2 \text{ or equivalent with other variables.}$		on Geog		above
$= 14625$ $YC = \sqrt{14625}$ $= 121 \text{ cm } (3 \text{ s. f.})$ $Mrea = \frac{1}{2}ab \sin C$ $= \frac{1}{2}x15 \times 121 \times \sin 95^{\circ}$ $= 904 \text{ cm}^{2}$ $Area \Delta ABC = \frac{1}{2} \times 120 \times 45 = 2700 \text{ cm}^{2}$ $Percentage = \frac{904}{2700} \times 100 = 33.5\%$ $I \text{ for method get th solution}$ I $C \text{ or a strong positive correlation.}$ I $V = 1.5Y + 2 \text{ or equivalent with other variables.}$			1	
$= 121 \text{ cm } (3 \text{ s. f.})$ b) $Area = \frac{1}{2}ab \sin C$ $= \frac{1}{2}x15 \times 121 \times \sin 95^{\circ}$ $= 904 \text{ cm}^{2}$ b) $Area \Delta ABC = \frac{1}{2} \times 120 \times 45 = 2700 \text{ cm}^{2}$ $Percentage = \frac{904}{2700} \times 100 = 33.5\%$ c) $A \text{ strong positive correlation.}$ i) $C \text{ Gradient} = \frac{12}{8} = 1.5$ i) $N = 1.5Y + 2 \text{ or equivalent with other variables.}$ 1 for substitute				
b) ii) $Area = \frac{1}{2}ab\sin C$ $= \frac{1}{2} \times 15 \times 121 \times \sin 95^{\circ}$ $= 904 \text{ cm}^2$ b) $Area \Delta ABC = \frac{1}{2} \times 120 \times 45 = 2700 \text{ cm}^2$ Percentage $= \frac{904}{2700} \times 100 = 33.5\%$ c) A strong positive correlation. i) C Gradient $= \frac{12}{8} = 1.5$ ii) $N = 1.5Y + 2$ or equivalent with other variables. 1				
iii) $Area = \frac{-}{2}ab\sin C$ substitue $= \frac{1}{2} \times 15 \times 121 \times \sin 95^{\circ}$ 1 for $= 904 \text{ cm}^2$ 1 forb) $Area \Delta ABC = \frac{1}{2} \times 120 \times 45 = 2700 \text{ cm}^2$ 1 Acceptioniii) $Percentage = \frac{904}{2700} \times 100 = 33.5\%$ 1 Acceptionc)A strong positive correlation.1i)Gradient = $\frac{12}{8} = 1.5$ 1c) $N = 1.5Y + 2$ or equivalent with other variables.1		= 121 cm (3 s. f.)		
$= \frac{1}{2} \times 15 \times 121 \times \sin 95^{\circ}$ $= 904 \text{ cm}^{2}$ $\frac{1}{2} \times 15 \times 121 \times \sin 95^{\circ}$ $= 904 \text{ cm}^{2}$ $\frac{1}{1} \qquad \text{Area } \Delta ABC = \frac{1}{2} \times 120 \times 45 = 2700 \text{ cm}^{2}$ $\frac{1}{1} \qquad \text{Acception}$ $\frac{1}{1} \qquad \text{Percentage} = \frac{904}{2700} \times 100 = 33.5\%$ $\frac{1}{1} \qquad \text{constrained}$ $\frac{1}{1} \qquad \frac{1}{1} \qquad \frac{1}{1}$		$Area = \frac{1}{2}ab\sin C$	2	1 for substitution
$\begin{array}{c c} & 2 \\ = 904 \text{ cm}^2 \\ \hline \\ $,	-		
$\begin{array}{c c} = 904 \text{ cm}^2 \\ \hline \\ \text{b)} \\ \text{iii)} \\ Area \ \Delta ABC = \frac{1}{2} \times 120 \times 45 = 2700 \text{ cm}^2 \\ \text{Percentage} = \frac{904}{2700} \times 100 = 33.5\% \\ \hline \\ \text{c)} \\ \text{A strong positive correlation.} \\ \hline \\ \text{c)} \\ \hline \\ \text{Gradient} = \frac{12}{8} = 1.5 \\ \hline \\ \\ \text{ii)} \\ \hline \\ N = 1.5Y + 2 \text{ or equivalent with other variables.} \\ \hline \\ 1 \\ \hline \\ \end{array}$		$= -\times 15 \times 121 \times \sin 95^{\circ}$		1.0
Percentage $= \frac{904}{2700} \times 100 = 33.5\%$ c) A strong positive correlation. i) Gradient $= \frac{12}{8} = 1.5$ ii) $N = 1.5Y + 2$ or equivalent with other variables. 1				1 for answer
Percentage $= \frac{904}{2700} \times 100 = 33.5\%$ c) A strong positive correlation. i) Gradient $= \frac{12}{8} = 1.5$ ii) $N = 1.5Y + 2$ or equivalent with other variables. 1		Area $\triangle ABC = \frac{1}{2} \times 120 \times 45 = 2700 \text{ cm}^2$	1	Accept any
c)A strong positive correlation.1i)Gradient = $\frac{12}{8}$ = 1.51c) $N = 1.5Y + 2$ or equivalent with other variables.1	1)	2		method to
c)A strong positive correlation.1i) 1 c) 1 ii) 1 c) $N = 1.5Y + 2$ or equivalent with other variables.1		Percentage = $\frac{904}{2700} \times 100 = 33.5\%$		•
c) (ii)Gradient = $\frac{12}{8} = 1.5$ 1c) $N = 1.5Y + 2$ or equivalent with other variables.1			1	solution
c) $N = 1.5Y + 2$ or equivalent with other variables. 1				
c) $N = 1.5Y + 2$ or equivalent with other variables. 1		$\text{Gradient} = \frac{12}{8} = 1.5$	1	
)	N = 1.5Y + 2 or equivalent with other variables.	1	
c) $N = 1.5 \times 20 + 2 = 32$ problems 1		$N = 1.5 \times 20 + 2 = 32$ problems	1	
iv)	r)			