SYDNEY BOYS HIGH SCHOOL

HSC TRIAL EXAMINATION 2006

PHYSICS

General Instructions

Reading Time 5 minutes
Working Time 3 hours
Write using blue or black pen
Draw diagrams using pencil.
Board- approved calculators may be used.
A data sheet, formulae sheets and
Periodic Table are provided with this
paper.

Marks may be allocated to working Show all working

Total marks - 100

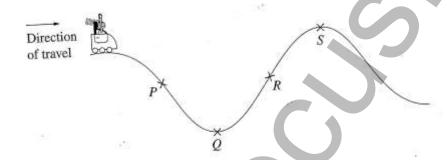
Section I Pages 2 – 16 Total marks 75

This section has two parts, Part A and Part B.

Part A – 15 marks

- Questions 1-15
- Allow about 30 minutes for this part

Part B - 60 marks


- Attempt Questions 16 30
- Allow about hour and 45 minutes for this part.

Section II Page 15 **Total marks 25**

1. There are a number of reasons which contribute to variations in the value of the acceleration due to gravity at specific locations on the surface of the Earth.

Which of the following pairs of reasons would **not** be responsible for such variations?

- (A) Crustal variations and the shape of the Earth.
- (B) The shape of the Earth and the height above sea level.
- (C) Height above sea level and the Earth's spin.
- (D) Crustal variations and the Earth's orbit around the Sun.
- **2.** The Earth, of radius and mass, 6.38×10^6 m and 5.98×10^{24} kg respectively, has an artificial satellite. The satellite orbits at an altitude of 300 km, has a mass of 200kg and travels with a velocity of 20 000km h⁻¹ The gravitational force acting on the satellite is;
 - (A) $1.8 \times 10^{-3} \text{ N}$
 - (B) $2.3 \times 10^{-1} \text{ N}$
 - (C) $1.8 \times 10^3 \text{ N}$
 - (D) $2.3 \times 10^3 \text{ N}$
- **3.** The diagram shows four positions of a car on a roller coaster ride.

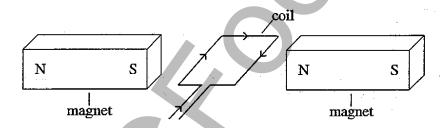
At which point during this ride would the occupant experience maximum 'g force'?

- (A) P
- (B) O
- (C) R
- (D) S
- **4.** The table contains information related to two planets orbiting a distant star.

Planets	Mass	Orbital	Radius of	Length of	Orbital
	(kg)	radius (m)	planets (m)	day (s)	period (s)
Alif	1.21×10^{25}	4.00×10^{11}	8.0×10^6	9.5×10^4	8.75×10^7
Ba	1.50×10^{24}	8.00×10^{11}	4.0×10^6	4.7×10^4	

The orbital period of the planet Ba can be determined by using data selected from this table.

What is the orbital period of the planet Ba?

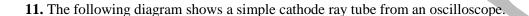

- (A) $3.10 \times 10^7 \text{s}$
- (B) $5.51 \times 10^7 \text{s}$
- (C) $1.39 \times 10^8 \text{s}$
- (D) $2.47 \times 10^8 \text{s}$

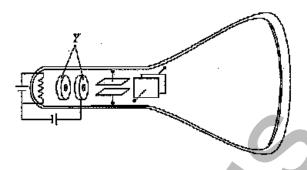
Student Number

5. A radioactive particle used in a linear accelerator. Measured at rest relative to the laboratory it has a half life of 2.5us. When measured at constant speed by an observer in the laboratory, its half life has increased to 10us.

What is the speed of the particle relative to the laboratory?

- (A) $1.68 \times 10^8 \text{ ms}^{-1}$ (B) $2.10 \times 10^8 \text{ ms}^{-1}$
- (C) 290 000 000 ms ⁻¹
- (D) $2.60 \times 10^8 \text{ ms}^{-1}$
- **6.** Identify which of the following is **not** a component of a DC generator.
 - (A) brushes
 - (B) coil
 - (C) magnetic field
 - (D) slip-rings
- 7. Two long parallel wires are carrying electrical currents. The direction of the current in one of the wires is reversed. How does this affect the force between the wires?
 - (A) The force does not change.
 - (B) The force changes direction.
 - (C) The force increases.
 - (D) The force decreases.
- **8.** The following diagram shows a coil of wire between two magnets.

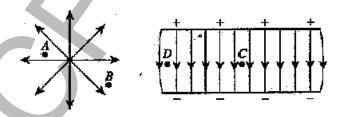



When a current passes through the coil in the direction shown, which is now free to move, the coil will:

- (A) start rotating clockwise (viewed from the front)
- (B) not move
- (C) move vertically
- (D) start rotating anticlockwise (viewed from front)
- 9. A piece of wire 1.0cm long is at right angles to a magnetic field whose magnetic flux density is 1.5T. A current of 2.0 A flows in the wire. What is the magnitude of the force on the wire?
 - (A) 3.0 N
 - (B) 0.3 N
 - (C) 0.03 N
 - (D) zero

10. A transformer is needed to convert an input voltage of 6000V to an output voltage of 240V. The **type of transformer** and the **ratio** of the number of turns in its secondary coil to the number of turns in its primary coil are

- (A) step up, 25:1
- (B) step up, 1:25
- (C) step down, 25:1
- (D) step down, 1:25



The parts labelled Y have the function of

- (A) producing electrons.
- (B) showing the position of the beam.
- (C) deflecting the beam horizontally.
- (D) accelerating the electrons.

12. The following diagram shows the electric fields near a point charge and between parallel plates.

At which point is the magnitude of the electric field greatest?

- (A) A
- (B) B
- (C) (
- (D) D

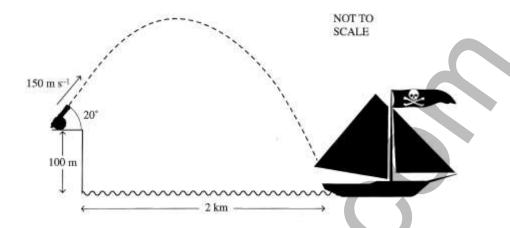
S	tudent	Num	ber						

13. Which of the following statements is correct?

- (A) Einstein was the first person to observe the photoelectric effect.
- (B) Planck hypothesised that energy was exchanged, in quanta amounts, by the atomic oscillators of a black body.
- (C) Hertz performed experiments to measure the speed of light, using radio waves.
- (D) Einstein predicted that for a black body, as the wavelength shortens, the radiation intensity will increase.

14. Solid state devices replaced thermionic devices because <u>thermionic</u> devices;

- (A) were much smaller and required less current in their circuits.
- (B) had a much longer life as they did not become warm at all.
- (C) were less reliable and were easily broken.
- (D) allowed the cathode coating to evaporate, helping current flow.


15. In metal conductors, the resistance

- (A) increases as the amount of impurities increase.
- (B) increases as the lattice vibrations decrease.
- (C) decreases as more electrons are scattered by lattice vibrations.
- (D) decreases as the temperature of the metal increases.

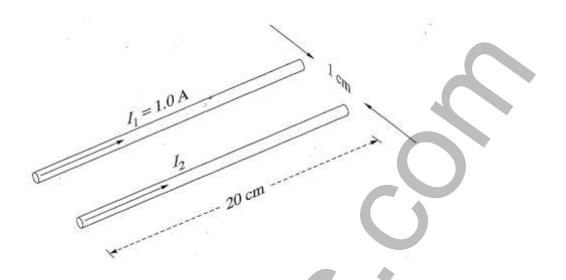
Student Number

Section B (60 marks) Show all working **16.**

Marks

An enemy ship was sailing 2km from the coast. A cannon on a 100 metre-high cliff fired a projectile at an angle of 20^{0} to the horizontal, at a speed of 150 m/s.

(a) Determine the vertical and horizontal components of the initial velocity.	2
(b) Calculate the time taken for the cannon ball to reach the maximum height and the maximum I	reight
of the cannon ball above the water.	
	3


(c) Calculate	
(i) the range of the cannon ball	2
(") have for form the ship the common hall he del	1
(ii) how far from the ship the cannon ball landed	1
(d) Describe an adjustment of the cannon that is necessary for a cannon ball to hit the ship.	1
17. Explain why all low earth orbit satellites will eventually fall to the Earth's surface.	2
18. A boy standing on train station platform observes a NLST (near light-speed transport) train	nass
through the station. He observes the clocks on the train to be running slower than normal. How	
girl on the train observes the boy's watch, and notices that his watch is running slower than the	
on the train.	CIOCKS
on the train.	
Account for the above situation with reference to the principle of relativity.	3
Account for the above situation with reference to the principle of relativity.	3
7	

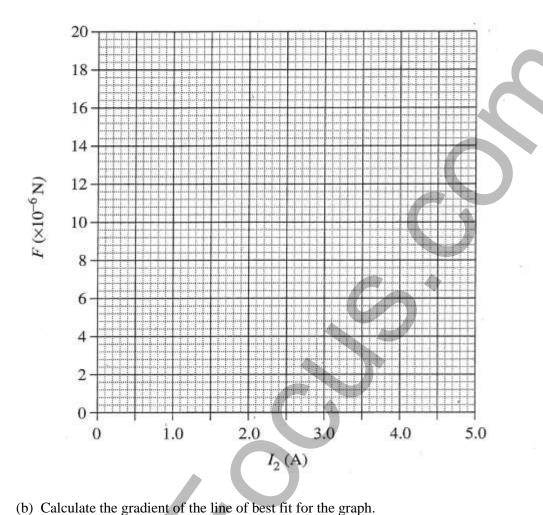
19. Michelson and Morley set up an experiment to measure the velocity of Earth relative to the aether.	Mark
(a) Outline TWO features of the aether model for the transmission of light.	2
	••
	••
(b) Recount the Michelson and Morley experiment, which attempted to measure the relative velocity of Earth through the aether, and describe the results they anticipated.	4
	••••
	••••
	••••

Student Number	
20. In your course you performed an investigation to demonstrate the production of an alternating current.	Mark
(a) Describe an experiment you did to produce alternating current, with particular reference to how you verified that alternating current was actually produced.	3
(b) Describe two advantages of using AC generators for large-scale electrical power production	ı. 2
······································	
21. The photograph shows a small electrical motor from an electric drill.	3
ciccircal motor from an electric arm.	3
(a) Name the labelled parts A, B, and C and	
(b) Describe the function	
Of each	

.....

22. The diagram shows part of an experiment designed to measure the force between two parallel current-carrying conductors.

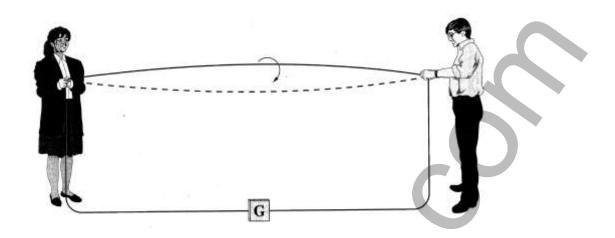
The experimental results are tabulated below.


$I_2(A)$	Force ($\times 10^{-6}$ N)
. 0	0
2.0	7
3.0	11
4.0	14
5.0	18

Question 22 (continued)

magnetic force constant k.

Mark 3


(a) Plot the data and draw the line of best fit.

(b) Calculate the gradient of the line of best fit for the graph.	1
(c) Write an expression for the magnetic force constant k in the terms of the gradient and other variables.	2
(d) Use this expression and the gradient calculated in part (b) to determine the value of the	1

S	tudent	Num	ber						

23. In a particular experiment a long length of copper wire of very resistance is rotated by two students. The ends of the wire are connected to a galvanometer G, and a current is detected.

Explain the effect of increasing the speed of rotation on the current measured by the galvanometer	4
24. Using silicon as an example of a semiconductor, describe how it carries a current and how	2
doping effects the process.	

25. During your course you carried out an investigation to model behaviour of semiconductors, including the concept of holes.	Marks 3
Outline what you did in your investigation. Explain how the model showed conduction in semiconductors.	
26. In early studies, the observed characteristics of cathode rays led to the belief that they were electromagnetic waves.	3
Describe the wave-like properties of cathode rays and explain how other evidence shows them to	, h o
particles.	000
27. A physics student was conducting an investigation on the photoelectric effect. The student u an infrared laser with a wavelength of 1.55 x 10 ⁻⁶ m for this investigation.	sed
(a) Calculate the energy of a photon from this laser.	2

3

(b) When the laser light was shone onto a photo-cell, no current was detected. The student

Student Number							
Student Number	 	 					

Explain this observation.	
28. (a) Calculate the frequency of a photon of blue light of wavelength 460nm.	1
(b) Identify Planck's hypothesis that allowed him to successfully account for the black body radiation curve.	1
29. Outline how Hertz measured the speed of radio waves.	3
30. Describe how superconductors and magnetic levitation have played a part in the development of the maglev train.	2

SECTION II- Option

From Quanta to Quarks. (25 Marks)	Marks
(a) Discuss Rutherford's model of the nuclear atom with orbiting electrons	4
(b) In refining the model of the atom, Bohr began with three postulates.	2
State 2 of Bohr's postulates.	
(c) Identify experimental evidence that supported <u>one</u> of Bohr's postulates and explain	2
how it provided this support.	4
	••
	••
	••
(d) Define the term transmutation.	1

Marks

Student	Number.					
Student	Nullioci.	 	 	 		

existence of a then unknown particle. Discuss Pauli's suggestion, and relate this to the energy of the emitted electrons.	4
(f) Calculate the mass of a particle that has a De Broglie wavelength of 2.5×10^{-12} m when moving with speed of 200ms^{-1} .	; 1
(g) Calculate the energy of the lowest frequency photon emitted in the Balmer series?	2
(h) Write the transmutation equation for the beta decay of Bi ²¹⁰ _{83.}	2

Marks

(i) Explain the significance of the conservation laws, in Chadwick's discovery of the neutron.	4
	>
(j) Justify the existence of the strong nuclear force.	3

END OF EXAMINATION

Data sheet

Charge on	the electron,	q.
-----------	---------------	----

$$-1.602 \times 10^{-19}$$
 C

$$9.109 \times 10^{-31} \text{ kg}$$

Mass of neutron,
$$m_n$$

$$1.675 \times 10^{-27} \text{ kg}$$

Mass of proton,
$$m_n$$

$$1.673 \times 10^{-27} \,\mathrm{kg}$$

$$3.00 \times 10^8 \text{ m s}^{-1}$$

Magnetic force constant,
$$\left(k \equiv \frac{\mu_0}{2\pi}\right)$$

$$2 \times 10^{-7} \text{ N A}^{-2}$$

$$6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$$

$$6.0 \times 10^{24} \text{ kg}$$

$$6.626 \times 10^{-34} \,\mathrm{J \, s}$$

Rydberg constant,
$$R_{\text{hydrogen}}$$

$$1.097 \times 10^7 \text{ m}^{-1}$$

$$1.661 \times 10^{-27} \text{ kg}$$

931.5 MeV/ c^2

$$1.602 \times 10^{-19} \,\mathrm{J}$$

$$1.00 \times 10^3 \ kg \ m^{-3}$$

$$4.18 \times 10^{3} \,\mathrm{J \, kg^{-1} \, K^{-1}}$$

Formulae sheet

$$v = f\lambda$$

$$I \propto \frac{1}{d^2}$$

$$\frac{v_1}{v_2} = \frac{\sin i}{\sin r}$$

$$E_{\rm p} = -G \frac{m_1 m_2}{r}$$

$$F = mg$$

$$v_x^2 = u_x^2$$

$$v = u + at$$

$$v_y^2 = u_y^2 + 2a_y \Delta y$$

$$\Delta x = u_x t$$

$$\Delta y = u_y t + \frac{1}{2} a_y t^2$$

$$\frac{r^3}{T^2} = \frac{GM}{4\pi^2}$$

$$F = \frac{Gm_1m_2}{d^2}$$

$$E=mc^2$$

$$l_{\nu} = l_0 \sqrt{1 - \frac{v^2}{c^2}}$$

$$t_{\nu} = \frac{t_0}{\sqrt{1 - \frac{v^2}{c^2}}}$$

$$m_{\nu} = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$$

$$E = \frac{F}{a}$$

$$R = \frac{V}{I}$$

$$P = VI$$

Energy =
$$VIt$$

$$v_{av} = \frac{\Delta t}{\Lambda}$$

$$a_{\text{av}} = \frac{\Delta v}{\Delta t}$$
 therefore $a_{\text{av}} = \frac{v - u}{t}$

$$\Sigma F = ma$$

$$F = \frac{mv^2}{r}$$

$$E_{\mathbf{k}} = \frac{1}{2}mv^2$$

$$W = Fs$$

$$n = mv$$

Impulse = Ft

Formulae sheet

$$\frac{F}{l} = k \frac{I_1 I_2}{d}$$

 $d = \frac{1}{p}$

$$F = BIl\sin\theta$$

 $M = m - 5\log\left(\frac{d}{10}\right)$

$$\tau = Fd$$

 $\frac{I_{\rm A}}{I} = 100^{(m_{\rm B} - m_{\rm A})/2}$

$$\tau = nBIA\cos\theta$$

$$m_1 + m_2 = \frac{4\pi^2 r^3}{2}$$

$$\frac{V_p}{V_s} = \frac{n_p}{n_s}$$

$$F = qvB\sin\theta$$

$$\frac{1}{\lambda} = R \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right)$$

$$E = \frac{V}{d}$$

$$\lambda = \frac{h}{m}$$

$$E = hf$$

$$c = f\lambda$$

$$A_0 = \frac{V_{\text{out}}}{V_{\text{out}}}$$

$$\frac{V_{\text{out}}}{V_{\cdot}} = -\frac{R_f}{R_{\cdot}}$$

$$\frac{I_{\rm r}}{I_{\rm o}} = \frac{[Z_2 - Z_1]^2}{[Z_2 + Z_1]^2}$$

	Rn [222.0] Radon	88	131.3 Xenan	χ φ	Krypton	83.80	36	Ar 39.95 Argon	Mann	Ne 20.18	4.003 Helium	2 He	
	At [210.0] Astetine	85	126.9 lodine	2 –	Влотіпе	79.90	35	CI 35.45 Chlorine	Pageing	F 19.00 Fluorine	5.5		
	Po [209.0] Polonium	84	127.6 Tellurium	25 Te	Selenium	Se 78.96	34	32.07 Suffer	oxygen	16.00 Deygen			
	209.0 Blamuth	-	121.8 Antimony	Sb	Arsenio	As 74.92	33	P 30.97 Phosphorous	Micological	14.01 Nitrogen			
	207.2 Lead	82	118.7 Tin	S. S.	Germanium	Ge 72.64	32	\$1 28.09 \$licon	Caleur	Carbon			
	71 204,4 Thallium	81	114.8 Influm	2 =		Ga 69.72		All Alluminium	00100	8 10.81 Boron			
	Hg 200.6 Mercury	80	112.4 Cadmium	8 B	Zinc	Zn 65.41	30						
111 Rg	197.0 Gold	79	107.9 Silver	Ag Ag	Сорраг	63.55	29	=	Gemain	f element element			
	195.1 Pletfaum	78	106,4 Palladium	2 P	Nickel	N 8	28		S De la Constantina	Symbol of element Name of element			
109 Mt	192.2 Indipm	77	Rhodism	€ €	Cobalt	Co 58.93	27		200	Au 197.0 Geld	KEY		
	190.2 0smum		- 100		\neg	Fe 55.85	56			mass			
107 Bh	Re 186.2 Rhaniem	_	200			Mn 54.94	25			Atomic mass			
106 Sg	183.8 Tungsten		- 40			52.00	24						
105 Db	Ta 180,9 Tantalum	73	92.91 Niobium	₹ 5	-	50.94							nts
	us E	72		Z Z	7	TI 47.87	22						Eleme
89-103 104 Rf	Lenthanides	57-71	788.91 Yttrium		Scandium	Sc 44.96	21						Periodic Table of the Elements
88 Ra	137.3 Barium	56	87.62 Strontium	S. S.		Ca 40.08	_	Mg 24.31 Magnesia	The state of the s	Be 9.012 Beryllium			c Table
87 Fr	Caesium	55	85.47 Rubidium	_	otassium	39.10	19	Na 22.99 Sodium		6.941 Uthium	1,008 Fydragen	-=	eriodi

	22		63	08	19	62	63	\$	65	99	67	88	69	20	7
Lanthanides	138.9 Lambanum	740.1 Cerium	140.9 Presendymum	144.9 Neodymium	Pm [146.9] Promethium	5m 150.4 Samarium	152.0 Europium	Gd 157,3 Gedolinium	158.9 Terbium	162.5 Dyp-086-2	164.9 Hölmlum	167.3 Erbium	168.9 Thullum	173.0 Ytterbium	175.0 Lotetium
Actinides	89 Ac [227.0] Actinium	90 Th 232.0 Thorium	91 Pa 231.0 Protectinium	92 U 238.0 Uranium	93 Np [237.0] Nepturiam	94 Pu [244.1] Plutonium	95 Am [243.1] Americium	96 Cm [247.1] Cunium	97 Bk [247.1] Berkelum	98 Cf [251.1] Californium	99 Es [252.1] Einsteinium	100 Fm [2521] Ferminn	101 Md [258.1] Mendelavium	102 No (259.1)	103 Lr [262.1] Lewrencium

Where the atomic weight is not known, the relative atomic mass of the most common radioactive isotope is shown in brackets.

The atomic weights of Np and Tc are given for the isotopes ²³⁷Np and ⁹⁹Tc.

SYDNEY BOYS HIGH SCHOOL HSC PHYSICS TRIAL MULTIPLE CHOICE ANSWER SHEET

	*
Student number	

	A	В	C	D
1				
2				
3				
4				
_				
5				
6				
7				
7				
8				
9				
10				
11				
12				
13				
14				
15				