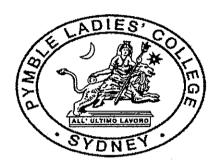
Mr Antonio		
Mrs Collett		
Mrs Kerr		
Ms Lau		
Mrs Soutar		

Name:	
Teacher:	•••••



2011
TRIAL HIGHER SCHOOL CERTIFICATE
EXAMINATION

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided
- All necessary working should be shown in every question
- Start each question in a new booklet
- Marks may be deducted for careless or untidy work

Total Marks - 84

- Attempt Questions 1-7
- All questions are of equal value

Mark	/84
Rank	/
Highest Mark	/84

Blank Page

Question 1. (12 Marks) Use a SEPARATE Writing Booklet.

Marks



- (b) Differentiate $tan^{-1}(lnx)$ with respect to x.
- (c) Find the coordinates of the point P that divides the interval joining A (-3, 8) and B (7, -3) internally in the ratio 2:3.

(d) Solve
$$\frac{4}{x-2} \le 2$$
.

- (e) The acute angle between the lines 2x y = 4 and y = mx + 3 is 45° . 2 Find the two possible values of m.
- (f) Use the substitution u = x 3 to evaluate $\int_4^5 \frac{x}{\sqrt{x 3}} dx$.

Question 2 (12 Marks) Use a SEPARATE Writing Booklet.

Marks

Let $f(x) = 3\sin^{-1} 2x$. (a)

Sketch the graph of y = f(x), clearly indicating the endpoints for the domain and the range.

Differentiate $x \cos^2 x$ with respect to x. (b) (i)

2

Hence, or otherwise, find $\int x \sin 2x \, dx$. (ii)

2

The polynomial $P(x) = x^3 + ax^2 - 2x + b$ has (x + 1) as a factor. P(x) has a (c) remainder of 4 when divided by (x-3).

3

3

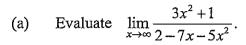
Find the values of a and b.

The function $f(x) = x - e^{-2x}$ has one root between x = 0 and x = 1. (d) Use one application of Newtons' method, starting at x = 0.3, to find another approximation for this root.

Write your answer correct to 2 decimal places.

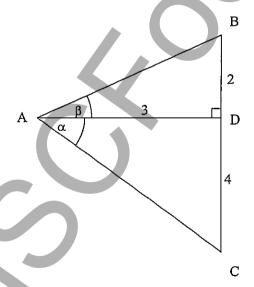
Question 3 (12 Marks) Use a SEPARATE Writing Booklet.

Marks



3

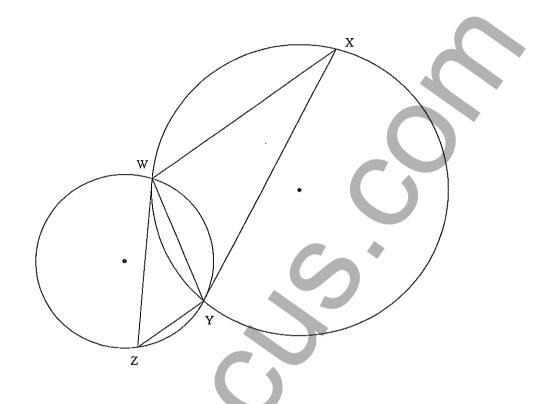
- (b) (i) Express $\sqrt{3} \cos \theta \sin \theta$ in the form $r \cos (\theta + \alpha)$, where r > 0, and $0 < \alpha < \frac{\pi}{2}$, giving r and α as exact values.
 - (ii) Solve $\sqrt{3}\cos\theta \sin\theta = -1$, for $0 \le \theta \le 2\pi$, giving your answers 2 as exact values.
- (c) In the diagram below, AD is perpendicular to BC. CD = 4, BD = 2 and AD = 3. $\angle CAD = \alpha$ and $\angle BAD = \beta$.



Find the exact value of $\sin (\alpha - \beta)$.

(d) WZ and XY are tangents to the circles WXY and WYZ respectively. The circles share two common points, W and Y.
 Copy or trace the diagram into your Writing Booklet.

3



Prove that $WX \parallel YZ$.

Question 4 (12 Marks) Use a SEPARATE Writing Booklet.

Marks

- (a) Find the exact value of $\int_0^{\ln 3} \frac{e^x}{e^x + 9} dx$.
- (b) Find the constant term in the expansion $\left(2x-\frac{1}{x}\right)^6$.
- (c) Prove by induction that $4p + 3p^2 + 2p^3$ is divisible by 3 for p = 1, 2, 3... 3
- (d) The temperature (T° C) of steel, after it has been removed from a hot furnace, after t minutes, satisfies the differential equation:

$$\frac{dT}{dt} = k(T-22)$$
 where k is a constant.

Initially, the temperature (T) of the steel is 100°C and when t=15minutes, T=70°C.

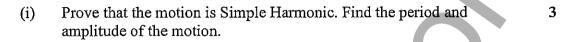
- (i) Use this information to find the exact values of A and k.
- (ii) Hence find the value of t when $T = 40^{\circ}$ C to the nearest minute.
- (e) Show that:

$$\sqrt{\frac{1+\sin 2\theta}{1-\sin 2\theta}} = \frac{1+\tan \theta}{1-\tan \theta}$$

Question 5 (12 marks) Use a SEPARATE Writing Booklet.

Marks

(a) The speed V cm/s of a particle moving along the x – axis is given by $V^2 = 27 + 18x - 9x^2$ where x is in cm.



- (ii) Find the acceleration of the particle when it is 1cm away from the centre of motion.
- (b) A stone is projected upwards from the edge of a cliff with a speed of 30m/s. It hits an object 120 m horizontally from the edge and 35 m vertically below it.

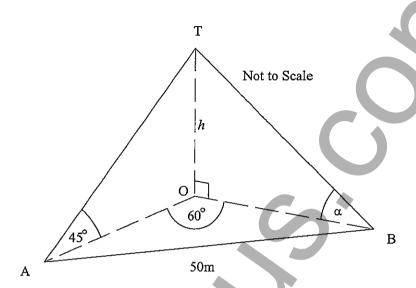
Assume that t seconds after the release, the position of the stone is given by $x = 30t \cos \alpha$ and $y = -5t^2 + 30t \sin \alpha$.

- (i) Find α , the angle of projection, to the nearest minute.
- (ii) Find the time taken for the stone to hit the object.
- (c) (i) Sketch the curve $y = x + \frac{4}{x}$ showing clearly all stationary points and asymptotes.
 - (ii) Hence, find the values of k such that $x + \frac{4}{x} = k$ has no real roots. 1

Question 6 (12 marks) Use a SEPARATE Writing Booklet.

Marks

(a)



In the above diagram, the points A, B and O are in the same horizontal plane. A and B are 50 m apart and $\angle AOB = 60^{\circ}$. OT is a vertical tower of height h metres.

The angles of elevation of T from A and B respectively are 45° and α ° (α is acute).

(i) Explain why
$$AO = h$$
.

1

(ii) Prove
$$h^2 \cot^2 \alpha - h^2 \cot \alpha + h^2 = 50^2$$
.

2

3

(iii) Given that the tower is 30m high, find the angle α correct to the nearest degree.

Question 6 - continued.

Marks

- (b) (i) Verify that $\frac{d}{dx} \left(x \sin^{-1} x + \sqrt{1 x^2} \right) = \sin^{-1} x$.
 - (ii) Hence, using a similar expression, find a primitive of $\cos^{-1} x$. 1
 - (iii) The curves $y = \sin^{-1} x$ and $\cos^{-1} x$ intersect at P.

 The curve $y = \cos^{-1} x$ also intersects the x axis at Q.

 Show that P has co-ordinates $\left(\frac{1}{\sqrt{2}}, \frac{\pi}{4}\right)$.
 - (iv) Find the area enclosed by the x axis and the arcs OP and PQ. 3

(a) A particle is moving in a straight line with acceleration given by

$$\frac{d^2x}{dt^2} = 9(x-2).$$

where x is the displacement in metres, from the origin O after t seconds. Initially the particle is 4m to the right of O and it has a velocity of V = 6m/s.

- (i) Show that $V^2 = 9(x-2)^2$.
- (ii) Find an expression for V and hence find x as a function of t.
- (b) PQ is a variable chord of the parabola $x^2 = 4ay$ which subtends a right angle at the vertex.
 - (i) If p and q are the parameters corresponding to the points P and Q, prove that pq = -4.
 - (ii) Show that the equation of the normal at P is $x + py = 2ap + ap^{3}.$ 2
 - (iii) Hence prove that the locus of the point of intersection of the normals at P and Q is the parabola $x^2 = 16a(y 6a)$.

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2} \right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right)$$

NOTE: $\ln x = \log_e x$, x > 0

