Question 1 (12 marks) Begin a new booklet

Marks

(a) Factorise fully $16x^3 - 2$ 2 (b) Consider the points A(-3,2) and B(6,-4). Find the coordinates of the point P(x, y) that divides the interval AB in the ratio of 2:1. Solve the inequality $\frac{2}{x+1} < 1$. (c) 2 (d) Consider $f(x) = 3x^3 + 6$. Explain, using calculus, why f(x) is 2 always increasing. (e) Differentiate: (i) $x \cos^2 3x$ 2 (ii) $x^2 \tan^{-1} x$ 2

Question 2 (12 marks) Begin a new booklet

Marks

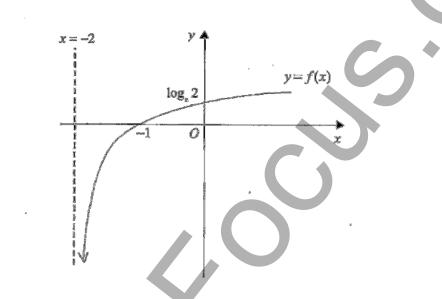
Find the values of k such that (x-2) is a factor of the polynomial (a) $P(x) = x^3 - 2x^2 + kx + k^2.$ Find correct to the nearest degree the acute angle between the lines 2 (b) y = 3x + 1 and x + y - 5 = 0Evaluate $\int_0^1 \frac{dx}{\sqrt{4-x^2}}$ 2 (c) (d) Use the substitution $t = \tan \frac{x}{2}$ to show that $\frac{1 - \cos x}{\sin x}$ = tan 3 $\sin x$ 2 (e) Graph $y = 2\sin 3x$ for $0 \le x \le 2\pi$ 3

Question 3 (12 marks) Begin a new booklet

Marks

Marks

(a)	A B	Three points <i>A</i> , <i>B</i> and <i>C</i> lie on a plane. Points <i>A</i> and <i>B</i> are 30 metres apart and $\angle ACB = 120^{\circ}$. A vertical flagpole, <i>CD</i> , of height <i>h</i> metres stands at <i>C</i> . From <i>A</i> the angle of elevation of the top, <i>D</i> , of the flagpole is 30°. From <i>B</i> the angle of elevation to <i>D</i> is 45°	
		(i) Find the length of AC and BC in terms of h	2
		terms of <i>h</i>.(ii) Hence find the value of <i>h</i> to	2
		one decimal place.	
(b)	The parametric equations of a parabola	a are	
	x = 2t		
	$y = 2t^2$ (i) Find the Cartesian equation of the	parabola	1
		this parabola at the point where $x = 2$.	
	(ii) Find the equation of the tangent to	this parabola at the point where $x = 2$.	2
(c)	Find $\int \sin^2 2x dx$		2
	6		
(d)	(i) Find the domain and range of the	e function $f(x) = \cos^{-1}(2x)$.	2
	(ii) Sketch the graph of the curve	$f(x) = \cos^{-1}(2x) .$	1


Marks

(a)	
A, B and C are points lying on circle with centre O. AO is parallel to BC. OB and AC intersect at D. $\angle ACB = 31^{\circ}$.	
(i) Find the size of $\angle AOB$, giving reasons.	2
(ii) Find the size of $\angle BDC$, giving reasons.	2
 (b) At time t years after the start of the year 2000, the number of individuals in A population is given by N = 80 + Ae^{0.1t} for some constant A > 0. (i) Show that dN/dt = 0.1(N-80). 	1
(ii) If there were 100 individuals in the population at the start of the year 2000 Find the year in which the population size is expected to reach 200.	3
Find the year in which the population size is expected to reach 200.	
(c) (i) Write $\sqrt{3}\cos x - \sin x$ in the form $r\cos(x+\alpha)$.	1
(ii) Hence, give the general solution to $\sqrt{3}\cos x - \sin x = 1$	3

Question 6 (12 marks) Begin a new booklet

- (a) A particle is moving in a straight line. At time t seconds it has displacement x metres from a fixed point O in the line, $v \text{ ms}^{-1}$ is given by $v = \frac{1}{x+1}$ and acceleration $a \text{ ms}^{-2}$. Initially the particle is at O.
 - (i) Express a as a function of x.
 - (ii) Express x as a function of t.

(b)

The diagram shows the graph of the function $f(x) = \ln(x+2)$.

- (i) Copy the diagram and on it draw the graph of the inverse function $f^{-1}(x)$ 2 showing the intercepts on the axes and the equation of the asymptote.
- (ii) Show that the *x*-coordinates of the points of intersection of the curves 2 = f(x) and $y = f^{-1}(x)$ satisfy the equation $e^x x 2 = 0$.

(iii) Show that the equation $e^x - x - 2 = 0$ has a root α such that $1 < \alpha < 2$.

(iv) Use one application of Newton's method with an initial approximation $\alpha_0 = 1.2$ 2 to find the next approximation for the value of α , giving your answer correct to one decimal place.

1

3

Question 7 (12 marks) Begin a new booklet

Marks

2

2

- (a) A particle is moving in a straight line with Simple Harmonic Motion. At time *t* seconds it has displacement *x* metres from a fixed point *O* on the line, given by $x = 1 + 3\cos\frac{t}{2}$, velocity $v \text{ ms}^{-1}$ and acceleration $a \text{ ms}^{-2}$.
 - (i) Show that $a = -\frac{1}{4}(x-1)$.

(c)

(ii) Find the distance travelled and the time taken by the particle over one complete oscillation of its motion.

A particle is projected with speed $V \text{ ms}^{-1}$ at an angle α above the horizontal from a point *O* at the top edge of a vertical cliff which is 80 m above horizontal ground. The particle moves in a vertical plane under gravity where the acceleration due to gravity is 10 ms^{-2} . It reaches its greatest height after 3 seconds and hits the ground at a horizontal distance of 320 m from the foot of the cliff.

The horizontal and vertical displacements, x and y metres respectively, of the particle from the point O after t seconds are given by $x = Vt \cos \alpha$ and $y = -5t^2 + Vt \sin \alpha$. (Do NOT prove these results.)

(i)	Show that $V \sin \alpha = 30$.	1
(ii)	Show that the particle hits the ground after 8 seconds.	2
(iii)	Show that $V \cos \alpha = 40$.	1
(iv)	Hence find the exact value of V and the value of α to the nearest minute.	2
(v)	Find the time after projection when the direction of motion of the particle first makes an angle of 45° below the horizontal.	2