HORNSBY GIRLS HIGH SCHOOL

Mathematics Extension I

Year 12 Higher School Certificate Trial Examination Term 3 2013

STUDENT NUMBER:

General Instructions

- Reading Time 5 minutes
- Working Time 2 hours
- Write using black or blue pen
 Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided seperately
- In Questions 11 14, show relevant mathematical reasoning and/or calculations
- Marks may be deducted for untidy and poorly arranged work
- Do not use correction fluid or tape
- Do not remove this paper from the examination

Total marks – 70

Section I Pages 3-6

10 marks

Attempt Questions 1 - 10

Answer on the Objective Response Answer Sheet provided

Section II Pages 7 - 11

60 marks

Attempt Questions 11 - 14.

Start each question in a new writing booklet.

Write your student number on every writing booklet.

Question	1-10	11	12	13	14	Total
Total						
	/10	/15	/15	/15	/15	/70

BLANK PAGE

Section I


10 marks

Attempt Questions 1 – 10

Allow about 15 minutes for this section

Use the Objective Response answer sheet for Questions 1 - 10

A polynomial equation has roots α , β and γ , where: $\alpha + \beta + \gamma = -3$, $\alpha\beta + \alpha\gamma + \beta\gamma = -2$ and $\alpha\beta\gamma = 4$. Which polynomial equation has the roots α , β and γ ?

(B)
$$x^3 + 3x^2 - 2x - 4 = 0$$

(C)
$$x^3 + 3x^2 + 2x + 4 = 0$$

(D)
$$x^3 - 3x^2 + 2x - 4 = 0$$

2 The solution to $\frac{4}{x-3} \le 2$ is:

(A)
$$3 \le x \le 5$$

(B)
$$3 < x \le 5$$

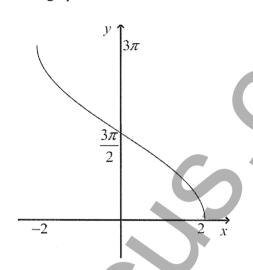
(C)
$$x < 3$$
 or $x \ge 5$

(D)
$$x \le 3$$
 or $x \ge 5$

 $\int \cos^2 4x \, dx =$

(A)
$$\frac{1}{2}x + \frac{1}{16}\sin 8x + C$$

(B)
$$\frac{1}{2}x - \frac{1}{16}\sin 8x + C$$

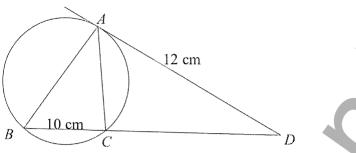

(C)
$$\frac{1}{2}x + \frac{1}{8}\sin 8x + C$$

(D)
$$\frac{1}{2}x - \frac{1}{8}\sin 8x + C$$

4 If P(x) = (x+2)(x+k) and if the remainder when P(x) is divided by (x-1) is 12, then:

- (A) k = 2
- (B) k = 3
- (C) k = 6
- (D) k = 11

5 Which function best describes the graph below?



- (A) $y = 2\cos^{-1} 3x$
- (B) $y = 2\cos^{-1}\frac{3x}{2}$
- (C) $y = 3\cos^{-1} 2x$
- (D) $y = 3\cos^{-1}\frac{x}{2}$

If the function f is defined by $f(x) = x^5 - 1$, then the inverse function of f, is defined by $f^{-1}(x) =$

- (A) $\sqrt[5]{x} 1$
- (B) $\sqrt[5]{x-1}$
- (C) $\sqrt[5]{x} + 1$
- (D) $\sqrt[5]{x+1}$

7 ABC is a triangle inscribed in a circle. The tangent to the circle at A meets BC produced at D where BC = 10 and AD = 12. What is the length of CD?

NOT TO SCALE

- (A) 6 cm
- (B) 7 cm
- (C) 8 cm
- (D) 9 cm
- $\int \frac{x^2}{e^{x^3}} dx =$
 - (A) $-\frac{1}{3e^{x^3}} + C$
 - (B) $-\frac{1}{3}e^{x^3}+C$
 - (C) $-\frac{1}{3}\ln e^{x^3} + C$
 - (D) $\frac{1}{3} \ln e^{x^3} + C$
- Consider the curve defined by the parametric equations $x = \frac{1}{t}$ and $y = \frac{t}{t+1}$.

The graph of y = f(x) would have asymptotes:

- (A) x = 0 only
- (B) x = 1, y = -1
- (C) x = -1 only
- (D) x = -1, y = 0

The velocity, v metres per second, of a particle moving in simple harmonic motion along the x axis is given by the equation $v^2 = 36 - 4x^2$.

What is the amplitude, in metres of the motion of the particle?

- (A) 3
- (B) 2
- (C) 6
- (D) 4

End of Section I

Section II

60 marks

Attempt Questions 11 – 14

Allow about 1 hour and 45 minutes for this section

Answer each question in a new writing booklet. Extra writing booklets are available.

In Questions 11 - 14, your responses should include relevant mathematical reasoning and/or calculations

Question 11 (15 marks)

Start a new writing booklet

Evaluate $\int_{0}^{2} \frac{dx}{\sqrt{16-x^2}}$.

Differentiate $3x^2 \ln x$, for x > 0.

2

2

Find the acute angle between the lines x+2y-5=0 and y=4x+5, giving your answer (c) 3 correct to the nearest minute.

3

Use the substitution $u = e^x$ to find $\int \frac{e^x}{1+e^x}$ (d)

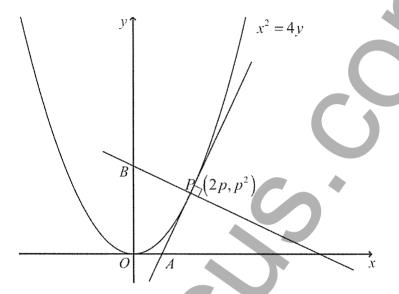
2

The staff in a school office consists of 5 males and 8 females. (e)

How many committees of 5 staff can be chosen that contain exactly 3 females?

Use the binomial theorem to find the term independent of x in the expansion of

3


$$\left(2x-\frac{1}{x^2}\right)^{12}$$

(f)

(a) Use mathematical induction to prove that $n! > 2^n$ for integer $n \ge 4$.

3

(b) The diagram below shows the graph of the parabola $x^2 = 4y$. The tangent cuts the parabola at $P(2p, p^2)$, p > 0, cuts the x axis at A. The normal to the parabola at P cuts the y axis at B.

NOT TO SCALE

(i) Show that the equation of the tangent AP is $y = px - p^2$.

2

(ii) Show that the equation of the normal PB is $x + py = p^3 + 2p$.

1

(iii) Find the coordinates of A and B.

2

(iv) Let C divide the interval AB in the ratio 2:1.

- 3
- Find the Cartesian equation of the locus of C, giving any domain restrictions.
- (c) Consider the function $f(x) = 1 + \cos^{-1}(2x 1) 2\cos^{-1}\sqrt{x}$ for $0 \le x \le 1$.
 - (i) Show that f'(x) = 0 for $0 \le x \le 1$.

3

(ii) Sketch the graph of y = f(x) for $0 \le x \le 1$.

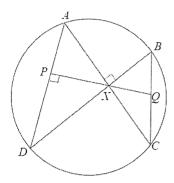
1

Question 13 (15 marks) Start a new writing booklet

(a) A particle is moving in simple harmonic motion has its acceleration given by $\frac{d^2x}{dt^2} = -25x$, where x metres is the displacement of the particle after t seconds.

Initially, the particle's acceleration is 50 ms⁻² and after $\frac{\pi}{6}$ seconds, the particle's velocity is -10ms^{-1} .

(i) Find the period of the motion.


2

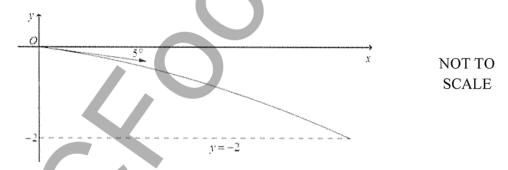
1

- (ii) Show that $x = a \sin(5t \alpha)$ is a possible equation of motion for this particle, where α and α are positive constants and α is acute.
- (iii) Show that the amplitude of the motion is 4 metres.
- (iv) Find the value of α .
- (v) Find the greatest speed of the particle and where the particle reaches this speed. 2
- (vi) How many times does the particle change direction in the first 2 seconds?
- (b) Let $(2+3x)^7 = \sum_{k=0}^7 t_k x^k$
 - (i) Write down an expression for t_k .
 - (ii) Hence show that $\frac{t_{k+1}}{t_k} = \frac{21 3k}{2k + 2}$ where 0 < k < 7.
 - (iii) Hence, or otherwise, find the greatest coefficient in the expansion of $(2+3x)^7$.

(a) The diagram below shows points A, B, C and D on a circle. The lines AC and BD are perpendicular and meet at X.

The perpendicular to AD through X meets AD at P and BC at Q.

NOT TO SCALE


Copy or trace this diagram into your writing booklet.

(i) Prove that $\angle QXB = \angle QBX$.

3

(ii) Prove that PQ bisects BC.

- 2
- (b) A cricket ball leaves a bowler's hand 2 metres above the ground with a velocity of 30 ms⁻¹ at an angle of projection of 5° **below** the horizontal, as shown below.

Using the origin as the point where the ball leaves the bowlers hand, the coordinates of the ball at time *t* are given by:

$$x = 30t \cos 5^{\circ}$$
$$y = -30t \sin 5^{\circ} - 5t^{2}$$

(Do not prove these results)

(i) Find the time it takes for the ball to strike the ground.

2

(ii) Calculate the angle at which the ball strikes the ground.

2

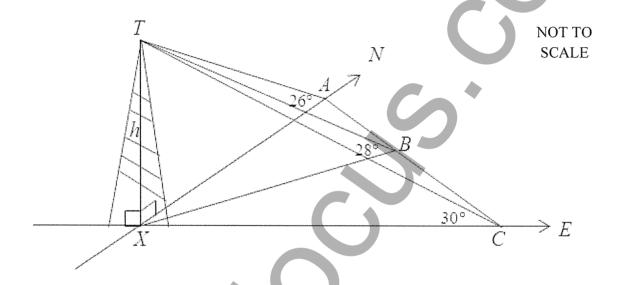
2

(iii) Show the motion of the ball is parabolic, even though it is projected at an angle below the horizontal.

Question 14 continues on page 11

Question 14 (continued)

(c) A television satellite tower stands on a large area of flat ground.


Three maintenance workers, A, B and C, are observing the tower.

Worker A is due north of the tower.

Worker C is due East of the tower.

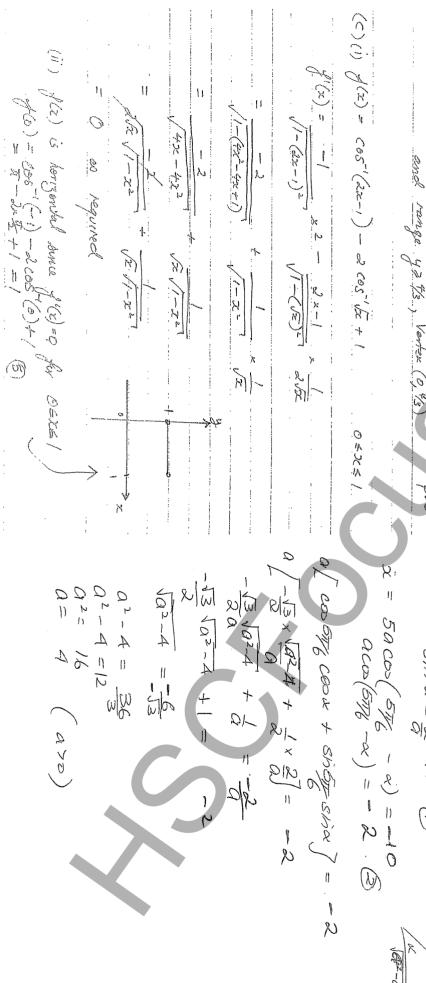
Worker B is on the line of sight-from A to C (A, B and C are collinear).

The angles of elevation of the top of the tower from A, B and C are 26°, 28° and 30° respectively.

- (i) Find $\angle XAC$, correct to one decimal place.
- (ii) Find $\angle ABX$, correct to the nearest degree.
- (iii) Hence, find the bearing of Worker B from the base of the tower X, correct to the nearest degree.

1

2


End of Paper

BLANK PAGE

-2 + x < 2 -: (b) is only option of	$ \frac{4^{k}}{4^{k}} \frac{9(i) = 12}{(1+2)(1+k) = 12} $ $ \frac{3+3k=12}{3k=9} \text{i. (B)} $ $ k=3 $	2 + 20 m s + 2	$\frac{(x-3)(x-2(x-3)) \le 0}{2(x-3)(5-2x) \le 0}$ $\frac{2(x-3)(5-2x) \le 0}{(x-3)(5-2x) \le 0}$	1	. Multiple Charce 1b =-3
10. $v^2 = 36 - 4x$ $= 4(9-x^2)$ $= n^2(a^2 - x^2)$ where $n = a$ and $a = 3$	$9. \chi = \frac{1}{2} \text{from } y = \frac{1}{2}$ $9. \chi = \frac{1}{2} \text{from } y = \frac{1}{2}$	8. \\ \frac{\pi^2}{\pi^2} \dx = \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	7. $AD = BD \times CD$ $B^{2} = (0; \pi)\pi$ $P^{2} = (0; \pi)\pi$ $O = \chi^{2} + (0x - 1; \pi)$ $O = (1; \pi)\pi$ $O = (1; \pi)\pi$ $O = (1; \pi)\pi$ $O = (1; \pi)\pi$	$f(x) = x + 1$ $f(x) = \sqrt{x + 1}$	6. f(x)= x5-1
$\frac{1}{8} t + e^{-x} $ $= \frac{tan^{-1}u}{t} + C $ $= \frac{du}{dx} = \frac{du}{dx}$ $= \frac{du}{dx}$ $= \frac{du}{dx}$	$= \frac{4}{3}$ $= $	(c.) $x + 2y - 5 = 0$ and $4x - y + 5 = 0$ $y_1 = -\frac{1}{2}$ and $x = \left(\frac{x}{x} - \frac{1}{2}\right)$	(b) $\frac{d}{d\pi} \left(3\pi^2 \ln \pi \right) = 3\pi^2 \pi \frac{1}{\pi} + 6\pi \times 6\pi \pi$ $= 3\pi + 6\pi \ln \pi$ $= 3\pi \left(1 + 2 \ln \pi \right)$		0,000 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2.45 = (A+) /2 /2 /2 /2 /2 /2 /2 /2 /2 /2 /2 /2 /2	Step 2 If result 15 true for n=16 Step 3 RTP for n=2+1 10 (2+1)/2-24-1	(a) RTP $n! > 2^n$ for $n \ge 4$ Step I have for $n = 4$ LHS = $4!$ RHS = 2^+ the for $n = 4$		(f) $(2x-\frac{1}{2x})^2$ has general learn $(2x-\frac{1}{2x})^2-(-\frac{1}{2x})^2$ power of x function = $(2-x-\frac{1}{2x})^2$ constant term has power of zero	(e) & x 5c = 8x 7x b x 5x4 = 560 = 560 -: 560 different committees of 5 contaming exactly 3 females could by chosen.
$B(x=0) = \frac{normal}{p_y} = \frac{p}{p^2+2} - \frac{\lambda(p_z o)}{B(o, p^2+2)}$	$\frac{pq-p^2=-x+2p}{2x+pq}=\frac{p^2+2p}{p^2+2p}$ so required	(ii) Normal $y-p^2=-1$ $(x-2p)$	(b) $x^2 = 4y$ $x = 2p$ $y = p^2$ (c) $\frac{dx}{dx} = 2$ $\frac{dy}{dx} = 2p$ $\frac{dy}{dx} = \frac{2p}{2} = p$ i Tangent $y = p^2 = p(3x-2p)$	the for n= 5 thence sence it is true to we for n= 6 and so on. Therefore by the process of Mestherness cher than 4 there for all integer to	

Question 13

(a) $\dot{x} = -25 \times \dot{x}$ (b) $\dot{x} = 6\sin (5t - \alpha)$ $\dot{x} = 5a\cos (5t - \alpha)$ $\dot{x} = -25a\cos (5t - \alpha)$ $\dot{x} = -25a\sin (-\alpha) = 50$ $\dot{x} = -25a\sin (-\alpha) = -2$ $\dot{x} = -25a\sin (-\alpha) = -2$

Ŋ

Q = 2 (3x) 2

St. Me

B (0, p2+2

(O, p2+2)

nm speed at centre of motion, $\dot{x} = 2\cos(5t - 76)$

-1 5 co (5t-17) 5 1

20 < 200 (5t-77) < 20

in max speed is some of and happens

Chapes avection when x=0 5x=77=72, 5x=72, 5x=72

(b) (i) $(2.+3x)^{7} = \sum_{k=0}^{7} \frac{7}{k} (2x)^{4}$ $(2.+3x)^{7} = \sum_{k=0}^{7} \frac{7}{k} (2x)^{4}$ $(3x)^{4}$

(i) tex1 = 7cx1, 26-6, 3 tex1.

 $\frac{t_{pt}}{t_p} = \frac{\pi_1 \times 2^{6-p} \cdot 3^{p+1}}{(6-k)!(p+1)!} \times \frac{(7-p)!}{7! \cdot 2^{3-p} \cdot 3^{p}} \cdot \frac{3^{p}}{3^{p}}$

(ii) 21-3h >, 1

 $21-3k^2, 2k^2 a \left(2k^2 a >_{i}0\right)$ $k \leq 3^{4}/5$

: k= 3 gres largest coefficients t3+1 = t4 = 22.680.

QUESTION IX

Ox /88\$ = 50

LCAD = x° (L' in same sagment)

[AxA + 90° + X° = 180° (L sum = Axio)

1AXP = 900-20

LAXA + LAXS + LBXS = 180 (straight line PARC).

90-12 + 90 + LAXO = 180 NOXQ " X

.. Loxa = LOBX (both agral of).

LDAX + LAXD + LXDA = 180 (L SUM AAXD) x + 90 + 1x0A = 180

[x04 = 90-x

Ö

· /CXQ = /xC3 = 48.04 ((x04 = 1x03 = 90 - x LAXOULXA 190 -2 both equal gone vertically opposite is

· AQCX is isosceles

ABOX I 150 sceles

BQ " XQ 100 m 100 (L's goposite equal sides)

1. BQ = CQ (book equal XQ)

i. Po bisects BC.

b) i) when y = -2 -2 = -30tsins - 52+ 527 30t six 5-2=0 t = -305in5 \$ \ 900 sin >5 + 40

0.423

4.0

13: JC = 30 Cos 5 y = -305in5-10t

ex = ex x dt

Yan 0 = -305, no -10t 30 (05 5

XXAC

= -12.480 = -6.2213

, , 6 = 12.48° or 167.57°

>)<u>;</u> from @ = + = x y = -30tsis - 52 ---(2) x = 30 t cos 5 __ 0 306055

Subst 3 Tito 3

y = -30x5x5 - 5x2 30 Coss 900 65 45

180 Cos 2 - x itans

of the form y = ax + 6x + c

to tan 26 = 1

far 30 = 1 第一张 1 夕火 かった

= forto 30 tou 30

л У 11 00 11

ton 28

1 40.7° · 0.84478 30.30

ii) Sin LARX = Sin 40.2

Six 148× " Six 40.2× to- 28 ter 26

ABX " 45°, 135° = 0.7037

185° as 185° Es 1888 >48.8°

180-135-40 =005°T 0x N56