

BAULKHAM HILLS HIGH SCHOOL

TRIAL 2013 YEAR 12 TASK 4

General Instructions

- Reading time 5 minutes
- Working time 120 minutes
- Write using black or blue pen
- Board-approved calculators may be used
- Show all necessary working in Questions 11-14
- Marks may be deducted for careless or badly arranged work

Total marks – 70 Exam consists of 10 pages.

This paper consists of TWO sections.

Section 1 – Page 2-4 (10 marks) Questions 1-10

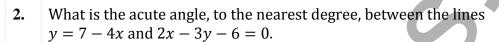
• Attempt Question 1-10

Section II – Pages 5-9 (60 marks)

• Attempt questions 11-14

Table of Standard Integrals is on page 10

- 1. The value of $\lim_{x\to 0} \frac{\sin 7x}{3x}$ is
 - (A) $2\frac{1}{3}$
 - (B) $\frac{3}{7}$
 - (C) 0
 - (D) 1



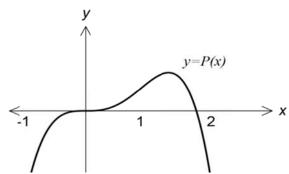
- $(A) 26^{\circ}$
- (B) 48°
- (C) 70°
- (D) 75°

3. Let α , β and γ be the roots of $2x^3 + x^2 - 4x + 9 = 0$.

What is the value of $\frac{1}{\alpha\beta} + \frac{1}{\alpha\gamma} + \frac{1}{\beta\gamma}$

- $(A) \frac{1}{9}$
- (B) $-\frac{1}{2}$
- (C) $\frac{1}{9}$
- (D) $\frac{1}{2}$

4. Which of the following could be the polynomial y = P(x)



(A)
$$P(x) = x^3(2-x)$$

(B)
$$P(x) = x^2(2-x)^2$$

(C)
$$P(x) = x^3(x-2)$$

(D)
$$P(x) = -x^3(x+2)$$

5. The coordinates of the points A and B are (-1,1) and (3,-1) respectively. Find the coordinates of P that divides the interval AB externally in the ratio 1: 3.

$$(A)\left(2,-\frac{1}{2}\right)$$

(B)
$$\left(-1\frac{1}{2}, \frac{1}{2}\right)$$

$$(C)(-3,2)$$

$$(D)(4,-2)$$

6. The number of different arrangements of the letters of the word **R E G I S T E R** which begin and end with the letter R is:

(A)
$$\frac{6!}{(2!)^2}$$

(B)
$$\frac{8!}{(2!)}$$

(C)
$$\frac{6!}{2!}$$

(D)
$$\frac{8!}{2!2!}$$

7. The inverse function of g(x) where $g(x) = \sqrt{3x - 8}$ is

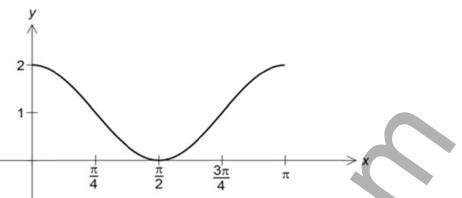
(A)
$$g^{-1}(x) = \frac{x^2+8}{3}$$

(B)
$$g^{-1}(x) = (3x - 8)^2$$

(C)
$$g^{-1}(x) = \sqrt{\frac{x}{3} + 8}$$

(D)
$$g^{-1}(x) = \frac{x^2 - 8}{3}$$

8. A possible equation for the curve drawn is:-



$$(A) y = -1 + \cos 2x$$

(B)
$$y = 1 + \cos 2x$$

$$(C) y = \cos(2x + 1)$$

$$(D) y = 1 - \cos 2x$$

9. The middle term in the expansion $(2x - 4)^4$ is

(B)
$$216x^2$$

(C)
$$384x^2$$

(D)
$$-96x^3$$

10. If $y = \sin^{-1}(2x)$, then $\frac{d^2y}{dx^2}$ equals

(A)
$$\frac{-8}{\sqrt{(1-4x^2)^3}}$$

(B)
$$\frac{4x}{\sqrt{1-4x^2}}$$

(C)
$$\frac{-8x}{\sqrt{(1-4x^2)^3}}$$

(D)
$$\frac{8x}{\sqrt{(1-4x^2)^3}}$$

End of Section 1

$Section \ II-Extended \ Response$

Attempt questions 11-16.

Answer each question on a SEPARATE PAGE. Clearly indicate question number. Each piece of paper must show your number.
All necessary working should be shown in every question.

Que	estion 11 (15 marks)	Marks
a)	Solve for x $\frac{2x+1}{1-x} \ge 1$	3
b)	It is given that $y = 2\cos 3\left(x - \frac{\pi}{3}\right)$, $0 \le x \le 2\pi$ Find (i) the amplitude. (ii) the period.	1 1
c)	Not to scale Two chords CD and AB of a circle are extended to meet at P . If $AB = 7 \text{cm}$, $BP = 3 \text{cm}$, $DP = 5 \text{cm}$ find CP .	1
d)	The graph of $y = 1 + 2 \sin^{-1}(2x - 1)$ is shown. $x = a + 2 \sin^{-1}(2x - 1)$ Determine the values of a, b , and c	2
e)	Form the cartesian equation by eliminating the parameter, θ , from these parametric equations. $x=3\tan\theta y=2\sec\theta$	2
f)	Solve $\sin 2\theta + \cos \theta = 0$ for $0 \le \theta \le 2\pi$.	3
g)	The radius of a spherical balloon is increasing at the rate of 2cm/sec. Find the rate at which the volume of the balloon is increasing when the radius is 10cm (in terms of π).	2
	End of Question 11	

Que	Question 12 (15 marks)	
a)	Evaluate $\int_0^{\frac{\pi}{6}} 2 \sin^2 x dx$	2
b)	By using the substitution $u = \sqrt{x}$, evaluate $\int_{1}^{4} \frac{dx}{x + \sqrt{x}}$	3
c)	Two parallel tangents to a circle, centre <i>O</i> , are cut by a third tangent at <i>P</i> and <i>Q</i> . Not to scale (i) Copy or trace the diagram into your solution booklet.	
	(ii) Prove $\Delta MOQ \equiv \Delta SOQ$ (iii) Prove that $\angle POQ = 90^{\circ}$.	2 2
d)	 (i) Express x = 2 cos 3t - 5 sin 3t in the form x = R cos(3t + α), where t is in radians. (ii) A particle moves in a straight line and its position at time t is given by x = 2 cos 3t - 5 sin 3t. Show that the particle is moving in simple harmonic motion. 	1
e)	The coefficients of x^2 and x^{-1} in the expansion of $\left(ax - \frac{b}{x^2}\right)^5$ are the same. Show that $a + 2b = 0$, where a and b are positive integers.	3
	End of Question 12	

Question 13 (15 marks)				
a)	In how many ways can a committee of 5 people be formed from a group of 9 people people, Harry and Archie, refuse to serve together on the same committee.	le, if 2 2		
b)	(i) Show by a sketch, without using calculus, that the equation $e^{2x} + 4x - 6$ has only one root.	5 = 0 1		
	(ii) Show that this root lies between 0 and 1.	1		
	(iii) By taking $x = 0.5$ as a first approximation, use one application of Newt method to find a better approximation of this root to two decimal places			
c)	A particle moves in a straight line with velocity v m/sec and acceleration given $\ddot{x}=2e^x$, where x is the displacement from 0 . The initial velocity is -2 m/sec at the origin.	ı by		
	(i) Prove that $v^2 = 4e^x$.	2		
	(ii) Hence find the displacement in terms of t .	3		
d)	When a body falls, the rate of change of its velocity, v , is given by $\frac{dv}{dt} = -k(v)$ where k is a constant.	– 500)		
	(i) Show that $v = 500 - 500e^{-kt}$ is a possible solution to this equation.	1		
	(ii) The velocity after 5 seconds is 21m/sec , find the value of k to 3 significant figures.	cant 1		
	(iii) Find the velocity after 20 seconds.	1		
	(iv) Explain the effect on the velocity as t becomes large.	1		
	End of Question 13			

Questio	n 14 (15 marks)	Marks
		2
b) Tw	yo points P and Q move on the parabola $x^2 = 4ay$ so that their x values differ by a .	
	P $\Rightarrow x$	
(i)	If <i>P</i> has coordinates (x_1, y_1) , show that the midpoint, <i>C</i> , of <i>PQ</i> is $\left(\frac{2x_1 + a}{2}, \frac{2x_1^2 + 2ax_1 + a^2}{8a}\right)$	2
(ii	Show that the locus of ${\it C}$ is another parabola.	2
	Question 14 continues on page 6	

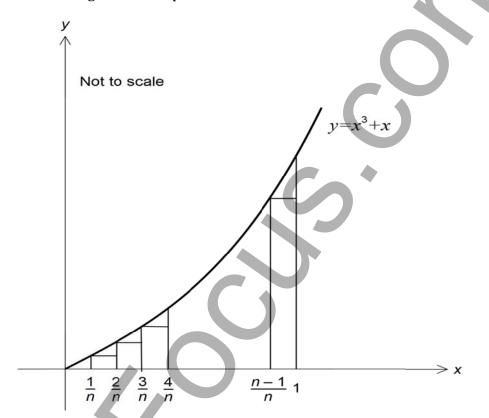
Question 14 (continued)

c) (i) Prove by mathematical induction n

3

$$\sum_{r=1}^{n} r^3 = \frac{1}{4}n^2(n+1)^2$$

(ii) The curve $y = x^3 + x$ is drawn and divided into n intervals between 0 and 1. The inner rectangles are completed as shown.



If A_n is the area of these rectangles show that

$$A_n = \frac{1}{n^4} \sum_{r=1}^{n-1} r^3 + \frac{1}{n^2} \sum_{r=1}^{n-1} r$$

(iii) Given that the area bounded by the curve, between x=0 and x=1, and the x axis is $\lim_{n\to\infty}A_n$, find a value for A_n using the result in part (i).

2

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \ n \neq -1; \ x \neq 0, \ if \ n < 0$$

$$\int \frac{1}{x} dx = \ln x, \qquad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \ a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \ a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \ a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \ a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \ a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx \qquad = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \ a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \ a > 0, \ -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln(x + \sqrt{x^2 - a^2}), \ x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln(x + \sqrt{x^2 + a^2})$$

NOTE: $\ln x = \log_e x$, x > 0

