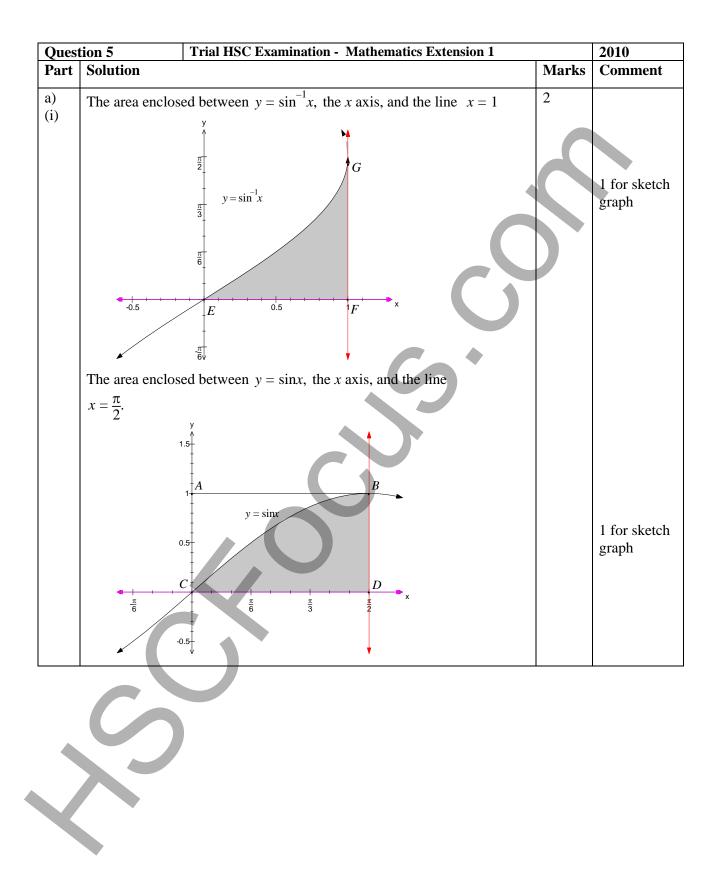


Quest	tion 1	Trial HSC Examination - Mathematics Extension 1		2010
Part	Solution		Marks	Comment
a)	$x = \frac{kx_2 + lx_1}{k + l}$ $3 = \frac{3x_2 + 2 \times 6}{3 + 2}$	$y = \frac{ky_2 + ly_1}{k + l}$ $2 = \frac{3y_2 + 2 \times -1}{3 + 2}$	2	1 for correct substitution in formula
	$15 = 3x_2 + 12$ $3 = 3x_2$	$10 = 3y_2 - 2$ $12 = 3y_2$		1 for point.
b)	$x_2 = 1$ The point M is $(x_2 - x_2)$		2	1 for
0)	$\int \frac{2}{\sqrt{x^2 + 25}} dx$	$x = 2 \int \frac{1}{\sqrt{x^2 + 25}} dx$ $= \int \frac{1}{\sqrt{x^2 + 5^2}} dx$	2	changing to standard form
		= $2 \ln \left(x + \sqrt{x^2 + 25} \right) + C$ Using Standard Integrals.		1 for integral.
c)	$\frac{2x}{x-3} \le x \ne \frac{2x}{x-3} (x-3)^2 \le \frac{2x}{x-3} (x-3)^2 = \frac{2x}{x-3} $	3 from denominator.	3	1 for eliminating the denominator 1 for
	$2x^2 - 6x \le 6x$	$2x^{2} - 12x + 18$ $2x^{2} - 12x + 18$ 18 3 But $x \neq 3$		working solution to a linear equation
	So <i>x</i> <	3		1 for solution
d)	r=1	$1^{2} + 2 \times 1 + 2^{2} + 2 \times 2 + 3^{2} + 2 \times 3 + 4^{2} + 2 \times 4 + 5^{2} + 2 \times 5$ 3 + 8 + 15 + 24 + 35 85	1	1 for answer

Quest	tion 1	Trial HSC Examination - Mathematics Extension 1		2010
Part	Solution		Marks	Comment
e)	= -27 + 57 - 30 = 0	19x - 30 ³ - 19(-3) - 30 3) is a factor of $P(x)$	2	1 for showing (x+3) is a factor
	$P(-5) = (-5)^{3}$ = -125 + $P(5) = (5)^{3} - $ = 125 - 9. ∴ (x - 5) is a fac	95 - 30 = -60 - 19(5) - 30 5 - 30 = 0	5	1 for finding either of other factors
f)	$u = x^{2} - 2$ du = 2x dx $\int \frac{x}{\sqrt{x^{2} - 2}} dx =$ $= \frac{1}{2} \int \frac{du}{\sqrt{u}}$ $= \frac{1}{2} \int u^{-\frac{1}{2}} du$ $= u^{\frac{1}{2}} + C$ $= \sqrt{x^{2} - 2} + C$		2	1 For correct method of substitution including du 1 for integral
			/12	
				1

Quest	tion 2	Trial HSC Examination - Mathematics Extension 1		2010
Part	Solution		Marks	Comment
a) (iii)	If chord passe $pq = -1$ and	s through (0, <i>a</i>) then $p = -\frac{1}{2}$	2	1 for introducing
		(a(p+q), apq).		pq = -1 to eliminate p or
	-	$\operatorname{hes}\left(a\left(-\frac{1}{q}+q\right),a\times(-1)\right)$		q
	$x = a \bigg(-\frac{1}{q} +$	(-q) and $y = -a$		
	$x = -y\left(\frac{q^2}{q}\right)$	$\left(\frac{-1}{2}\right)$		1 for relating <i>x</i> and <i>y</i> and obtaining the
	$qx = y(1 - q^2)$)	equation of the locus.
	$y = \frac{q \cdot r}{1 - q^2}$	OR SIMILARLY $y = \frac{px}{1-p^2}$ = $1 - 2\sin^2 A$		
b)	$\cos 2A$	$= 1 - 2\sin^2 A$	2	1 for transformation
	$2\sin^2 A$	$= 1 - \cos 2A$		of the integral
	$\sin^2 A$	$=\frac{1}{2}(1-\cos 2A)$		or recalling a formula
	J	$=\frac{1}{2}\int 1 - \cos 12x dx$		1 for integration
	=	$=\frac{1}{2}\left(x - \frac{1}{12}\sin 12x\right) + C$		
	=	$=\frac{x}{2} - \frac{\sin 12x}{24} + C$		
c)	There are ⁸ P.	(8!) ways the 8 vehicles can park.	2	1 for arrangement
	-	s are together, treat them as one, so there are 7 vehicles.		of vehicles
		k in $^{7}\mathbf{P}_{7}$ (7!) ways with		with utes together.
		s of arranging the utes among themselves.		
	So the 7 are an	tranged in $\frac{7!}{2!}$ ways.		
	Probability =	$=\frac{7!}{2!} \div 8!$		1 for
		<u>7!</u> 8! 2!		probability
	=	$\frac{1}{8 \times 2}$		
	=	$\frac{1}{16}$		

Quest	tion 2 Trial HSC Examination - Mathematics Extension 1		2010
Part	Solution	Marks	Comment
d)	Since $AB = x$, $EB = x - 4$ and since $CD = y$, $ED = y - 3$ $AE \cdot EB = CE \cdot ED$ (Ratio of intercepts on chords) 4(x - 4) = 3(y - 3) 4x - 16 = 3y - 9 4x = 3y + 7	3	1 1 1
		/10	
		/12	


Quest	tion 3 Trial HSC Examination - Mathematics Extension 1		2010
Part	Solution	Marks	Comment
a) (i)	$f(x) = (x^3 - 12x)^{\frac{1}{3}}$	1	No need to simplify further
	$f(x) = \frac{1}{3}(x^3 - 12x)^{-\frac{2}{3}} \cdot (3x^2 - 12)$		
a) (ii)	$x_{1} = -3.3$ $f(x_{1}) = ((-3.3)^{3} - 12(-3.3))^{\frac{1}{3}}$	2	1 for evaluating function and derivative.
	≈ 1.54 2		
	$f'(x_1) = \frac{1}{3}((-3.3)^3 - 12(-3.3))^{-\frac{2}{3}} \times (3(-3.3)^2 - 12)$ ≈ 2.90		1 for substitution into Newtons
	$x_{2} = x_{1} - \frac{f(x_{1})}{f'(x_{1})}$ $= 2.2 \cdot 1.54$		Method formula.
	$= -3.3 - \frac{1.54}{2.90}$ ≈ -3.83 (2 dec places)		
a) (iii)	As Newtons Method uses the intercept that the tangent makes, from the graph, the tangent at -3.3 is quite flat compared to the sudden drop in the curve to meet the axis. Hence the tangent would meet the axis much further along than the graph, so the second approximation is not as good as the first.	1	Mark for mention of the tangent meeting the axis or similar
b) (i)	$\sin\frac{\pi}{4} = \cos\frac{\pi}{4} = \frac{1}{\sqrt{2}}$	2	1 correct definition
	$\sin\left(x + \frac{\pi}{4}\right) = \sin x \cos \frac{\pi}{4} + \cos x \sin \frac{\pi}{4}$ $= (\sin x) \times \frac{1}{\sqrt{2}} + (\cos x) \times \frac{1}{\sqrt{2}}$		
	$= \frac{\sin x + \cos x}{\sqrt{2}}$		1 correct evaluation
b) (ii)	$\frac{\sin x + \cos x}{\sqrt{2}} = \frac{\sqrt{3}}{2}$	2	1 for initial solution of $\frac{\pi}{3}$ and set.
	$\sin\left(x + \frac{\pi}{4}\right) = \frac{\sqrt{3}}{2}$		3
	$x + \frac{\pi}{4} = \frac{\pi}{3}$ or $\frac{2\pi}{3}$ $\left(\frac{\pi}{4} \le x + \frac{\pi}{4} \le \frac{9\pi}{4}\right)$		1 for final solution for <i>x</i>
	$x = \frac{\pi}{12}$ or $\frac{5\pi}{12}$ $(0 \le x \le 2\pi)$		

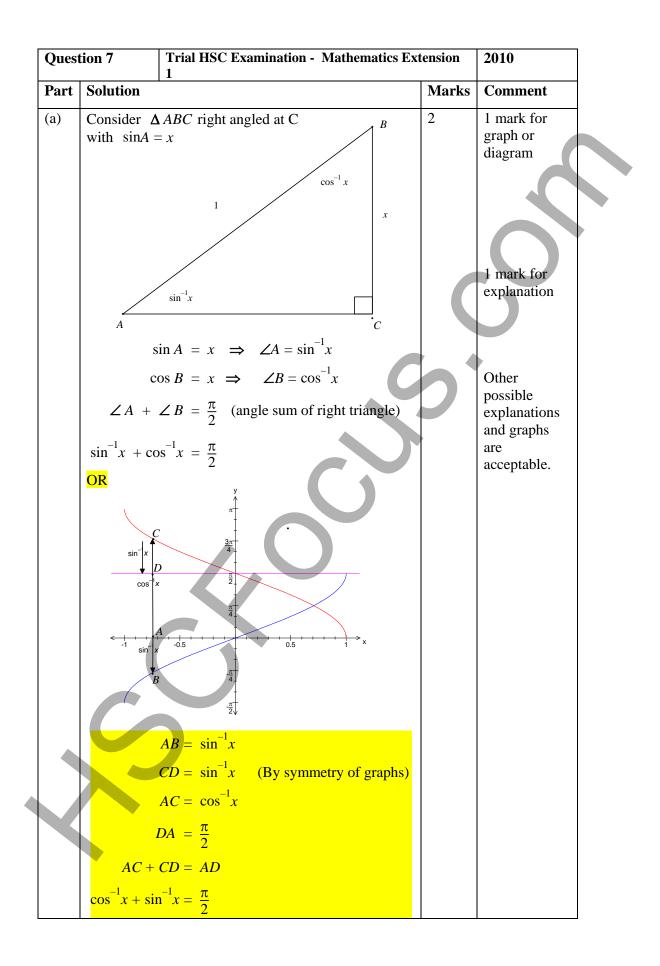
c)		2	1 for
(i)	B C	2	partially
(-)	x = 180 - y		completed
			proof with
	$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $		some of the
	O		required
			points or with single
			error
	y y		
	y y		
	A		2 for
	$\angle EDC = \angle CBD = x$ (Angle between a tangent and a chord is		completely correct
	equal to the angle in the alternate segment)		proof
	Similarly $\angle ECD = \angle CBD = x$	r	1
	Hence $\angle ECD = \angle EDC = x$		Or any other
	Or $EC = ED$ (Tangents from an external point are equal)		valid proof
	Hence $\angle ECD = \angle EDC = x$		
	$\angle CED = 180 - \angle ECD - \angle EDC$ (Angle sum of triangle)		
	$\angle CED = (180 - 2x)^{\circ}$		
c)	$\angle BCD = 180 - y^{\circ}$ (Opposite angles of cyclic quadrilateral	2	1 for cyclic
(ii)	are supplementary)		quad or
			similar
	$\angle BDC = 180 - \angle CBD - \angle BCD$		partial proof.
	= 180 - x - (180 - y)		proof.
	= 180 - x - 180 + y		2 for full
	$=(y-x)^{\circ}$		proof.
		/12	

Quest	tion 4	Trial HSC Examination - Mathematics Exte	ension 1	2010
Part	Solution		Marks	Comment
ı)	In expansi	on of $(a+b)^n$ $T_{r+1} = {}^n C_r a^{n-r} b^r$	3	1 for writing the general
		$T_{r+1} = {}^{9}\mathbf{C}_{r}(x^{2})^{9-r} \left(-\right.$	$\left(-\frac{2}{x}\right)^r$	term or starting to write out the
		$= {}^{9}\mathbf{C}_{r} x^{18-2r} (-2)$	$r x^{-r}$	expansion.
	In the expa	nsion of $\left(x^2 - \frac{2}{x}\right)^9 = {}^9\mathbf{C}_r(-2)^r x^{18-3}$	3r	1 for simplifying th
	For the term $18 - 3r =$	n independent of x,		term in x and setting to zero
	3 <i>r</i> =	= 18		1 for term either as a
		= 6		single number
		$= {}^{9}\mathbf{C}_{6}(-2)^{6} x^{0}$		or the unexpanded
		4 × 64 376		expression given.
		$\mathbf{C}_6(-2)^6$ for full marks.		8
	С	C ·		

b)	$P(x) = x^{3} + mx^{2} + 2mx + n$	3	1 for setting up simultaneous
	P(-3) = 0		equations
	$(-3)^{3} + m(-3)^{2} + 2m(-3) + n = 0$		
	3m + n = 27 ①		
	P(2)=0		
	$(2)^{3} + m(2)^{2} + 2m(2) + n = 0$		
	8m + n = -8 ②		
	5m = -35 @ $-$ ①		
	m = -7		
	3(-7) + n = 27		
	n = 48		1 for solving
	$P(\alpha) = 0$		for m and n
	$\alpha^3 - 7\alpha^2 - 14\alpha + 48 = 0$		
	Three factors $(x - \alpha)(x - 2)(x + 3)$ give a constant term of 48	*	
	$-6(-\alpha) = 48$		
	$\alpha = 8$		
	OR Test factors, Try P(8)		
	$(8)^3 - 7(8)^2 - 14(8) + 48 = 0$		1 for
	OR use division transformation		evaluating α
	ANSWER $m = -7$, $n = 48$, $\alpha = 8$		
c)	$f(x) = \log_e\left(\sqrt{9-x^2}\right),$	2	1 for $argument > 0$
	The log function has its argument greater than zero		argument >0
	$\sqrt{9-x^2} > 0$		
	$9 - x^2 > 0$		1 for solving
	(3-x)(3+x) > 0		for the
	Domain $-3 < x < 3$		domain.
d)	$P(Heavy, Heavy) = 0.05 \times 0.05$	1	
(i)	= 0.0025		
d)	$P(3 \text{ are heavy}) = {}^{25}C_3(0.95)^{22} \times (0.05)^3$	1	
(ii)	$= 2300 \times (0.95)^{22} \times (0.05)^{3}$		
	= 0.0930 (3 sig fig)		
	▼		

d)	P(at least 4 heavy) =	2	1 for
(iii)	1 - P(0H) - P(1H) - P(2H) - P(3H)	2	identifying
	$= 1 - {}^{25}\mathbf{C}_0 (0.95)^{25} \times (0.05)^0 - {}^{25}\mathbf{C}_1 (0.95)^{24} \times (0.05)^1$		complement and terms
	$= {}^{-25}\mathbf{C}_{2}(0.95)^{23} \times (0.05)^{2} - {}^{25}\mathbf{C}_{3}(0.95)^{22} \times (0.05)^{3}$		required
	$= C_2(0.93) \times (0.03) - C_3(0.93) \times (0.03)$ = 1 - 0.2774 - 0.3650 - 0.2305 - 0.0930		1 for answer
	$= 0.034 \ (2 \text{ sig fig})$		1 Ior answer
		/12	

Quest			2010
Part	Solution	Marks	Comment
a) (ii)	$\int_{0}^{1} \sin^{-1} x dx$ corresponds to the area <i>EFG</i> , which is congruent to the area ABC by symmetry of inverse functions about $y = x$. Together with area BCD which corresponds to $\int_{0}^{\frac{\pi}{2}} \sin x dx$. they form the rectangle	2	1 mark for partial explanation that relates the areas o the two functions
	ABCD which has area $A = 1 \times \frac{\pi}{2} = \frac{\pi}{2}$ So $\int_{0}^{1} \sin^{-1} x dx + \int_{0}^{\frac{\pi}{2}} \sin x dx = \frac{\pi}{2}$ And hence		2 marks for a fuller explanation that clearly relates the areas to the rectangle and explain the require
b) (i)	$\int_{0}^{1} \sin^{-1} x dx = \frac{\pi}{2} - \int_{0}^{\frac{\pi}{2}} \sin x dx.$ $(1+x)^{n-1} = \binom{n-1}{0} 1^{n-1} + \binom{n-1}{1} 1^{n-2} x + \binom{n-1}{2} 1^{n-3} x^{2} + \dots$ $\dots + \binom{n-1}{n-2} 1^{1} x^{n-2} + \binom{n-1}{n-1} x^{n-1}$ Let $x = 1$ $(1+1)^{n-1} = \binom{n-1}{0} 1^{n-1} + \binom{n-1}{1} 1^{n-2} (1) + \binom{n-1}{2} 1^{n-3} (1)^{2} + \dots$	2	relationship 1 for the expansion $(1+x)^n$
	$\dots + {\binom{n-1}{n-2}} 1^{1} (1)^{n-2} + {\binom{n-1}{n-1}} (1)^{n-1}$ $\binom{n-1}{1} 1^{n-2} (1) + {\binom{n-1}{2}} 1^{n-3} (1)^{2} + \dots$ $\dots + {\binom{n-1}{n-2}} 1^{1} (1)^{n-2} + 2 = 2^{n-1}$		1 for obtaining required result
	$\binom{n-1}{1} + \binom{n-1}{2} + \dots$ $\dots + \binom{n-1}{n-2} = 2^{n-1} - 2$		


Quest	tion 5	Trial HSC Examination - Mathematics Extension 1		2010
Part	Solution		Marks	Comment
b)		$2^{n-1} - 2 > 1000$	2	1 for using
(ii)		$2^{n-1} > 1002$		logs or tria
	,			and error
	()	$(n-1) \ln 2 > \ln 1002$		
		$n-1 > \frac{\ln 1002}{\ln 2}$		
		n-1 > 9.9		1 for answ
		n > 10.9		
	Least positve i			
c)	Endpoints when		1	1 mark for
(i)	$v^2 =$	$24 + 2x - x^2 = 0$		two
	(6-x)(4+x) =	0		endpoints
	<i>x</i> =	6 and $x = -4$		
c)	$v^2 =$	$\frac{6 \text{ and } x = -4}{24 + 2x - x^2} = 0$	2	1 mark for
(ii)	Accoloration	d(1,2)		d (1)
	Acceleration =			$a = \frac{d}{dx} \left(\frac{1}{2}v^2\right)$
		$\frac{d}{dx}\left(\frac{24+2x-x^2}{2}\right)$		Ì
	=-	$\frac{1}{4x}\left(\frac{1}{2}\right)$		1 mark for
	=	$\frac{2-2x}{2}$		answer
		2		
c)	Acceleration = $\frac{2}{2}$	x = 1 - x	1	1 mark for
(iii)	$a = -n^2 x$		1	answer
	x = 1 - x			
	$\frac{x}{x} = -1^{2}(x-1)$			
	n = 1			
	Period $T = \frac{2\pi}{n}$			
	n			
	Period $T = 2\pi$	seconds	/12	
			/12	

Question 6 Trial HSC Examination - Mathematics Extension 1 2010			
Part	Solution	Marks	Comment
l)		1	1 mark for
i)	у		using
	1		derivative
		/	
	* 4/		
	$x^2 = 8y$		
	x = 8y		
	$P(4p, 2p^2)$		
	S(0, 2)		
	α		
	$\leftarrow 0$		
	× /		
	$y = \frac{x^2}{8}$		
	^y = 8		
	dy 2x x		
	$\frac{dy}{dx} = \frac{2x}{8} = \frac{x}{4}$		
	2 dy 4n		
	At $P(4p, 2p^2) \frac{dy}{dx} = \frac{4p}{4} = p$		
ii)	$2n^2$ 2	1	1 mark for
,	$\text{Grad SP} = \frac{2p^2 - 2}{4p - 0}$		using gradient
	$\frac{1}{2}$		form correctly
	$=\frac{p^2-1}{2p}$		
	2p		
	\frown		

Question 6 Trial HSC Examination - Mathematics Ext					2010	
Part	Solution		Ma	rks	Comment	
(iii)	$\tan\beta = \frac{1}{1}$	$m_1 - m_2$	2		1 for formula	
	1	$+ m_1 m_2$			for angle	
		2 1			between two	
		$\frac{p - \frac{p^2 - 1}{2p}}{p + p\left(\frac{p^2 - 1}{2p}\right)}$			lines.	
	= -	$\frac{2p}{2}$				
	1	$+ p \left(\frac{p^2 - 1}{p} \right)$				
		(2p)			1 for	
	2	$n^2 - n^2 + 1$			simplifying	
	<u> </u>	$\frac{p^2 - p^2 + 1}{2p} = \frac{p^2 - 1}{2}$				
	=	$\frac{2p}{2}$			Or any other	
	-	$\frac{2+p-1}{2}$			valid method	
		2			vand method	
	p	$\frac{p^2 + 1}{2p}$ $\frac{p^2 + 1}{2}$				
		$\overline{2p}$				
	=	$\frac{2}{2} + 1$				
	<u>P</u>	$\frac{1}{2}$				
	= p	$\frac{p^2+1}{2p} \times \frac{2}{p^2+1}$				
		$2p = p^2 + 1$				
	_ 1					
	$=\frac{1}{p}$					
(iv)	tan α	= <i>p</i>	1		1 mark for any	
	4 O	1 1			reasonable	
	tanp	$=\frac{1}{p}=\frac{1}{\tan\alpha}=\cot\alpha$			relating of	
					α and β to	
	cota	$= \tan\left(\frac{\pi}{2} - \alpha\right)$			get required result.	
					iesuit.	
	So tan B	$= \tan\left(\frac{\pi}{2} - \alpha\right)$ $= \tan\left(\frac{\pi}{2} - \alpha\right)$				
	so tan p	$-\operatorname{tar}(\overline{2}^{-\alpha})$				
	~	π				
	β	$=\frac{\pi}{2}-\alpha$				
	$\alpha + \beta$	$=\frac{n}{2}$				
			1		1	
~						
	•					

Question 6		Trial HSC Examination - Mathematics Extension		<u>2010</u>	
Part S	Solution		Marks	Comment	
b) S	Show tru	e for $n = 1$	3	1 mark for	
2	$4^1 + 14 =$	14+4		showing true	
:	=18 = 6	<3		for $n = 1$	
	∴ true fo	or $n = 1$			
	Assume	true for $n = k$			
2	$4^{k} + 14 =$	6 <i>p</i>			
	Consider	k = n = k + 1		1 mark for	
2	$4^{k+1} + 14$	$= 4 \times 4^{k} + 14$		showing case	
:	$=4\times 4^k$ +	$-4 \times 14 - 3 \times 14$		for $n = k + 1$	
		14)-3×14		n - k + 1	
	$= 4 \times 6p$,			
	$= 6(4 p - 6)^{-1}$			1 mark if all	
	• •	is divisible by 6		necessary steps for induction	
		proposition is true for $n = k$		are done,	
		for $n = k + 1$		including the	
		e true for $n = 1$		statement of assumption	
		tion is true for all $n \ge 1$		and the	
	-			conclusion	
	f(x) = 4x		2	1 mark for substitution	
<u>f</u>	$\frac{f(x+h)}{h}$	$\frac{-f(x)}{h} = \frac{4(x+h)^2 - 5(x+h) - 4x^2 + 5x}{h}$		into formula	
	n		2	and	
		$=\frac{4(x^2+2xh+h^2)-5(x+h)-4x}{h}$	<u>x</u> ⁻	simplifying	
		$=\frac{4x^2+8xh+4h^2-5x-5h-4x^2}{h}$			
		$=\frac{8xh+4h^2-5h}{h}$ $=\frac{h(8x+4h-5)}{h}$			
		h(8x+4h-5)		1 1 6	
		$=\frac{h(\alpha + m - \beta)}{h}$		1 mark for eliminating h	
		$f'(x) = \lim_{h \to 0} \frac{h(8x + 4h - 5)}{h}$		and obtaining	
				required result	
		$= \lim_{h \to 0} \left(8x + 4h - 5 \right)$			
		$n \rightarrow 0$ = $8x - 5$			
		$-0\lambda = J$		1	

Part	Question 6Trial HSC Examination - Mathematics Extension 12010				
arı	Solution		Marks	Comment	
d)	$d \sim 2$	-1 2 2 -1 1 -1 2	2	1 mark for use	
	$\frac{d}{dx}(2x \ c)$	$\cos^{-1} 2x = 2x^2 \frac{-1}{\sqrt{\frac{1}{4} - x^2}} + 4x \cos^{-1} 2x$		of product rule	
		$\sqrt{\frac{1}{4}} - x$			
				1 mark for	
		$= 2x^2 \frac{-2}{\sqrt{1-4x^2}} + 4x \cos^{-1} 2x$		completing	
		$\sqrt{1-4x^2}$		derivatives and	
		$-4x^2$ -1		simplifying (2 nd last line or	
		$= \frac{-4x^2}{\sqrt{1-4x^2}} + 4x \cos^{-1} 2x$		(2 nd last line or	
		$\sqrt{1-4x}$		equivalent is acceptable as	
				the answer)	
			/12		
	I				
	С				
	С				
	С				
	C				

b) $\vec{x} = -x$ i) $\frac{d}{dx}(\frac{1}{2}v^2) = -x$ $(v = \dot{x})$ $\frac{1}{2}v^2 = -\frac{x^2}{2} + C$ At $x = 0$, $\dot{x} = v = 1$ $\frac{1}{2}(1)^2 = 0 + C$ $C = \frac{1}{2}$ $v^2 = 1 - x^2$ $ \dot{x} = \sqrt{1 - x^2}$ ii) Let $x = acos(nt + \alpha)$ a = 1 and $n = 1x = cos(t + \alpha)a = 0$, when $t = 00 = cos\alphax = sin(t + \alpha)x = sin(t + \alpha)$	Question 7	Trial HSC Examination - Mathematics Extens		2010	
$\frac{d}{dx}\left(\frac{1}{2}v^{2}\right) = -x (v = \dot{x})$ $\frac{1}{2}v^{2} = -\frac{x^{2}}{2} + C$ $At x = 0, \dot{x} = v = 1$ $\frac{1}{2}(1)^{2} = 0 + C$ $C = \frac{1}{2}$ $\frac{1}{2}v^{2} = -\frac{x^{2}}{2} + \frac{1}{2}$ $v^{2} = 1 - x^{2}$ $ \dot{x} = \sqrt{1 - x^{2}}$ $\frac{1}{ \dot{x} } = \sqrt{1 - x^{2}}$	Part Solution		Marks	Comment	
ii) $a = 1 \text{ and } n = 1$ $x = \cos(t + \alpha)$ x = 0, when t = 0 $0 = \cos\alpha$ a = 1 and n = 1 $x = \sin(t + \alpha)$ a = 1 and n = 1 $x = \sin(t + \alpha)$ a = 1 and n = 1 $x = \sin(t + \alpha)$	(i) $\frac{d}{dx}\left(\frac{1}{2}v^{2}\right) = \frac{1}{2}v^{2} = \frac{1}{2}v^{2} = \frac{1}{2}(1)^{2} = \frac{1}{2}v^{2} = $	$= -x (v = \dot{x})$ = $-\frac{x^{2}}{2} + C$ = 0, $\dot{x} = v = 1$ = $0 + C$ = $\frac{1}{2}$ = $-\frac{x^{2}}{2} + \frac{1}{2}$ = $1 - x^{2}$	2	using $\frac{d}{dx}\left(\frac{1}{2}v^2\right)$ Or other way of relating v in terms of x 1 mark for working to required	
r = 0 when $t = 0$	b) (ii) x = co x = 0,	$= 1 - x^{2}$ $= \sqrt{1 - x^{2}}$ $= 1 -$	2	1 for form of equation either sin or	

Quest	tion 7	Trial HSC Examination - Mathematics Ext	ension	2010
Part	Solution		Marks	Comment
;) i)	$\frac{dV}{dt} =$	0.5	2	
(1)		0.5t + C		
	When $t =$	0, V = 0		
	V =	$\frac{t}{2}$		
	V =	$\frac{4}{3}\pi r^3$		1
		$\frac{4}{3}\pi r^3$		
		$8\pi r^3$		
	$r^3 =$	$\frac{5i}{8\pi}$		
	r =	$\sqrt[3]{\frac{3t}{8\pi}}$	0	1
	C			

Quest	tion 7	Trial HSC Examination - Mathematics Ext 1	tension	2010
Part	Solution	1	Marks	Comment
c) (ii)	<i>r</i> =	$\sqrt[3]{\frac{3t}{8\pi}}$	3	1 mark for obtaining $\frac{dr}{dt}$
	<i>r</i> =	$\left(\frac{3t}{8\pi}\right)^{\frac{1}{3}}$		dt
		$\left(\frac{3}{8\pi}\right)^{\frac{1}{3}} \times t^{\frac{1}{3}}$		
		$\left(\frac{3}{8\pi}\right)^{\frac{1}{3}} \times \frac{t^{-\frac{2}{3}}}{3}$		
	$A = \frac{dA}{dr} =$			
	$\frac{dA}{dt} =$	$\frac{dA}{dr} \cdot \frac{dr}{dt}$	0	1 morts for
		$r r \times \left(\frac{3}{8\pi}\right)^{\frac{1}{3}} \times \frac{t^{-\frac{2}{3}}}{3}$		1 mark for expression for $\frac{dA}{dt}$
		$\pi \left(\left(\frac{3t}{8\pi}\right)^{\frac{1}{3}} \right) \times \left(\left(\frac{3}{8\pi}\right)^{\frac{1}{3}} \times \frac{t}{3}^{\frac{2}{3}} \right)$		
	When $t = dA_{-}$			
	$\frac{dt}{dt} =$	$8 \pi \left(\left(3\frac{8}{8\pi}\right)^{\frac{1}{3}}\right) \times \left(\left(\frac{3}{8\pi}\right)^{\frac{1}{3}} \times \frac{\left(8\right)^{-\frac{2}{3}}}{3} \right)$ $\pi \times \left(\frac{3}{\pi}\right)^{\frac{1}{3}} \times \frac{1}{2} \left(\frac{3}{\pi}\right)^{\frac{1}{3}} \times \frac{1}{12}$		1 mark for evaluating
	$= \pi$	$(\pi) (2\pi) (\overline{12})$		this when $t = 8$
	$=\frac{\pi}{3}\left($ $=\frac{\pi}{3}\left($	$\left(\frac{\pi}{2}\right)^{-\frac{2}{3}}$		
K		$\left(\frac{5}{3}\right)^{\frac{1}{3}}$		
		$\int \frac{\pi}{3}$		

Question 7		Trial HSC Examination - Mathematics E	xtension	2010
Part	Solution	1	Marks	Comment
	OR			
	$r = \sqrt[3]{\frac{3t}{8\pi}}$			
	$\left(2t \right)^{\frac{1}{3}}$			
	$r = \left(\frac{3t}{8\pi}\right)^{\frac{1}{3}}$			
	<i>dr</i> 1 3	$(3t)^{-\frac{2}{3}}$		
	$\frac{dr}{dt} = \frac{1}{3} \times \frac{3}{8\pi}$	$\times \left(\frac{8\pi}{8\pi}\right)$		
	$=\frac{1}{8\pi}\left(\frac{3t}{8\pi}\right)^{-1}$	$\frac{2}{3}$		
	$A = 4\pi r^2$ dA			
	$\frac{dA}{dr} = 8\pi r$			
	$\frac{dA}{dt} = \frac{dA}{dr} \times \frac{dA}{dr}$	$\frac{dr}{dt}$		
	$\frac{dA}{dt} = 8\pi r \times t$	$\overline{8\pi}(\overline{8\pi})$		
	$=r \times \left(\frac{3t}{8\pi}\right)^{-1}$	$\frac{2}{3}$		
	(8π)	2		
	$=\left(\frac{3t}{8\pi}\right)^{\frac{1}{3}}\times\left($	$\left(\frac{3t}{8\pi}\right)^{-\frac{3}{3}}$		
	(8π) ([8π]		
	$= \left(\frac{3t}{8\pi}\right)^{-\frac{1}{3}}$			
	when $t = 8$			
	$\frac{dA}{h} = \left(\frac{24}{2}\right)^2$	$\frac{1}{3}$		
	$dt \left(8\pi \right)$			
	$=\left(\frac{3}{2}\right)^{-\frac{1}{3}}$			
	(π)			
	$=\left(\frac{\pi}{3}\right)^3$			
			I	<u> </u>

Question 7 Trial HSC Examination - Mathematics Extension			2010	
Part	Solution	1	Marks	Comment
c)	$4\pi r^2$	= 200	1	1 mark for
(iii)	2	50		answer in
	<i>r</i> :	$=\frac{50}{\pi}$		seconds
				or minutes
	<i>r</i> :	$=\sqrt{\frac{50}{\pi}}$		and seconds
	r	$= \sqrt[3]{\frac{3t}{8\pi}}$		or in unsimplified
		₩ 8π		form.
	50	$\sqrt{3t}$		
	$\sqrt{\frac{50}{\pi}}$	$= \sqrt[3]{\frac{3t}{8\pi}}$		
	$\left(\sqrt{\frac{50}{\pi}}\right)^6$	$= \left(\sqrt[3]{\frac{3t}{8\pi}} \right)^6$		
	$\frac{125000}{\pi^3}$ =	$=\frac{9t^2}{64\pi^2}$	0	
	$t^2 =$	$= \frac{125000}{\pi^3} \cdot \frac{64\pi^2}{9}$	P	
		$=\frac{8000000}{9\pi}$		
		= 282 942		
	<i>t</i> =	= 532 seconds		
	<i>t</i> =	= 8 minutes and 52 seconds		
			/12	