

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

2008 TRIAL

HIGHER SCHOOL CERTIFICATE

Mathematics

General Instructions

- Reading Time 5 Minutes
- Working time 2 Hours
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators may be used.
- Start each question in a new booklet
- The questions are of equal value
- Marks may NOT be awarded for messy or badly arranged work.
- All necessary work should be shown in every question.
- Full marks will NOT be given unless the method of the solution is shown.

Extension 1

Total Marks – 84

Attempt all questions

Examiner: R. Boros

This is an assessment task only and does not necessarily reflect the content or format of the Higher School Certificate

STANDARD INTEGRALS $\int x^n dx = \frac{1}{n+1} x^{n+1}, \ n \neq -1; \ x \neq 0, \text{if } n < 0$ $\int \frac{1}{x} dx = \ln x, \ x > 0$ $\int e^{ax} dx = \frac{1}{a} e^{ax}, \ a \neq 0$ $\int \cos ax \, dx = \frac{1}{a} \sin ax, \ a \neq 0$ $\int \sin ax \, dx = -\frac{1}{a} \cos ax, \ a \neq 0$ $\int \sec^2 ax \, dx = \frac{1}{a} \tan ax,$ $\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, \ a \neq 0$ $\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \ a \neq 0$ $\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \ a > 0, \ -a < x < a$ $\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln\left(x + \sqrt{x^2 - a^2}\right), \ x > a > 0$ $\frac{1}{\sqrt{x^2+a^2}}dx = \ln\left(x+\sqrt{x^2+a^2}\right)$ NOTE: $\ln x = \log_e x, x > 0$

Start each question in a new answer booklet.

Marks

2

2

2

2

2

Question 1 (12 marks).

a) Find the acute angle between the intersection of the curves $y = x^2 + 4$ and $y = x^2 - 2x$, correct to the nearest minute.

b) *A* is the point (-4, 2) and *B* is the point (3, -1). Find the coordinates of the point *P* which divides the interval *AB* externally in the ratio 2:1

c) Differentiate
$$y = \log_e(\sin^{-1} x)$$

d) Solve the inequality
$$\frac{x-1}{x+3} \ge -2$$

e) If $\cos A = \frac{7}{9}$ and $\sin B = \frac{1}{3}$ where *A* and *B* are acute angles, Prove that A = 2B.

f) Use the substitution
$$u = t + 1$$
 to evaluate $\int_{0}^{1} \frac{t}{\sqrt{t+1}} dt$ 2

End of Question 1.

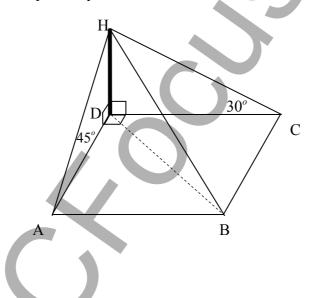
Marks

3

4

Question 2 (12 Marks).

- a) The polynomial $P(x) = ax^3 + bx^2 8x + 3$ has a factor of (x-1) and leaves a remainder of 15 when divided by (x+2). Find the values of *a* and *b* and hence fully factorise P(x).
- b) (i) Express $3\sin\theta + 2\cos\theta$ in the form $R\sin(\theta + \alpha)$ where α is an acute angle.
 - (ii) Hence, or otherwise solve the equation $3\sin\theta + 2\cos\theta = 2.5$ for $0^{\circ} \le \theta \le 360^{\circ}$. Answer correct to the nearest minute.
- c) A post *HD* stands vertically at one corner of a rectangular field *ABCD* The angle of elevation of the top of the post *H* from the nearest corners *A* and *C* are 45° and 30° respectively.



(i) If AD = a units, find the length of BD in terms of a(ii) Hence, find the angle of elevation of H from the corner B to the nearest minute. (i) Taking $x = \frac{-\pi}{6}$ as a first approximation to the root of the equation $A = \frac{1}{6}$

 $2x + \cos x = 0$, use Newton's method once to show that a second

approximation to the root of the equation is
$$\frac{-\pi - 6\sqrt{3}}{30}$$
.

End of Question 2.

Question 3 (12 marks)).		Marks	
a)		Diagram not to scale.		
X	M L Y	Т		
-	of a circle. XY is produced to T and TP			
	ctor of $\angle PTX$ meets XP in M and cuts I	<i>PY</i> at <i>L</i> . Prove that		
ΔMPL is isosce			3	
b) (i) F	Find the domain and range of $f^{-1}(x) = s$	$in^{-1}(3x-1)$.	2	
(ii) S	Sketch the graph of $y = f^{-1}(x)$.		1	
(iii) F	Find the equation representing the invers	e function $f(x)$ and		
S	tate the domain and range.		3	
c) Newton's Law of	of Cooling states that the rate of cooling	of a body is		
proportional to t	the excess of the temperature of a body a	above the surrounding		
-	is rate can be represented by the differen	-		
$\frac{dT}{dt} = -k\left(T - T_0\right)$), where T is the temperature of the bod	ly, T_0 is the		
temperature of t	he surroundings, <i>t</i> is the time in minutes	and k is a constant.		
(i) S	Show that $T = T_0 + Ae^{-kt}$, where A is a c	constant, is a solution		
ta	o the differential equation $\frac{dT}{dt} = -k(T - t)$	T_0).	1	
(ii) A	A cup of coffee cools from $85^{\circ}C$ to 80°	<i>C</i> in one minute in a		
r	oom temperature of $25^{\circ}C$. Find the tem	perature of the cup of		
с	coffee after <u>a further</u> 4 minutes have elap	sed. Answer to the	2	
nearest degree.				
	End of Question 3			

End of Question 3.

Marks

1

1

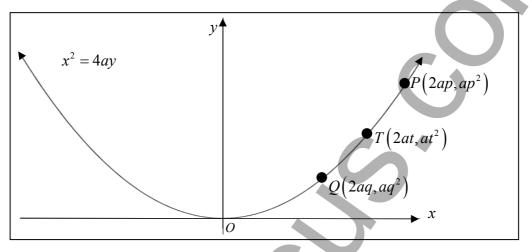
2

1

2

Question 4 (12 marks).

- a) Find the number of ways of seating 5 boys and 5 girls at a round table if:
 - (i) A particular girl wishes to sit between two particular boys.
 - (ii) Two particular persons do not wish to sit together.
- **b)** $P(2ap, ap^2)$ and $Q(2aq, aq^2)$ are the points on the parabola $x^2 = 4ay$



It is given that the chord PQ has the equation $y - \frac{1}{2}(p+q)x + apq = 0$

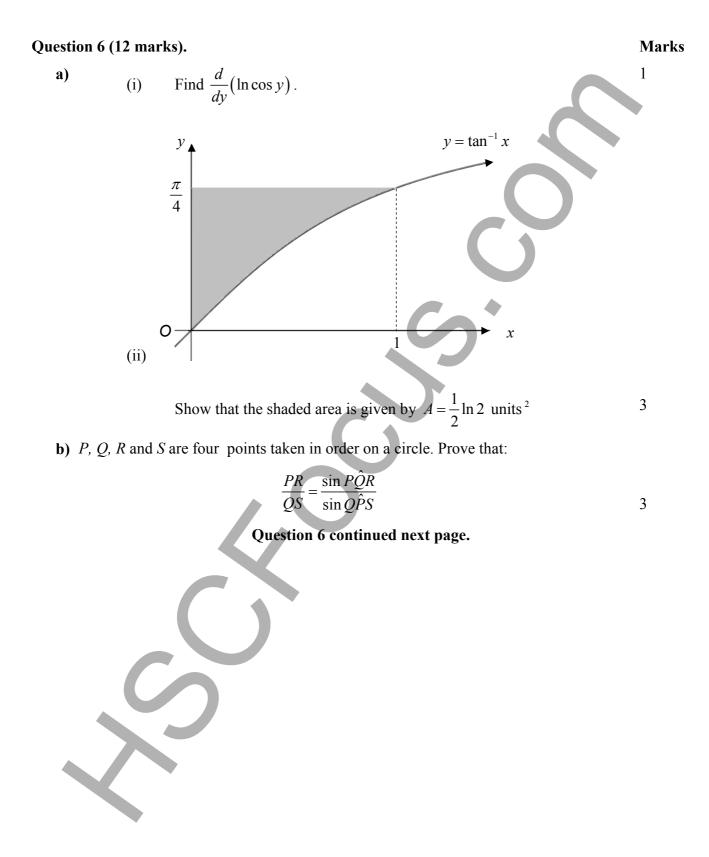
- (i) Derive the equation of the tangent to the parabola $x^2 = 4ay$ at the point $T(2at, at^2)$.
- (ii) The tangent at T cuts the y-axis at the point R. Find the coordinates of the point R.
- (iii) If the chord PQ passes through the point R show that p, t and q are terms of a geometric series.
- c) A particle moves so that its distance x cm from a fixed point O at time t seconds is $x = 2\cos 3t$.

	(i)	Show that the particle satisfies the equation of motion $\ddot{x} = -n^2 x$			
	\frown	where <i>n</i> is a constant.	2		
X	(ii)	What is the period of the motion?	1		
	(iii)	What is the velocity when the particle is first 1cm from O.	2		

End of Question 4.

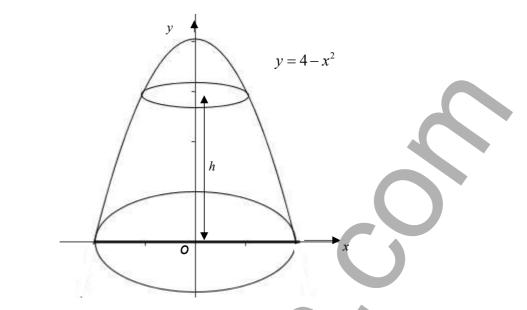
Start a new booklet.

Question 5 (12 marks).							
a) Find the general solution of the equation $\tan \theta = \sin 2\theta$							
b)	b) The cubic equation $2x^3 - x^2 + x - 1 = 0$ has roots α, β and γ . Evaluate						
	(i)	$\alpha\beta + \beta\gamma + \alpha\gamma$	1				
	(ii)	αβγ	1				
	The equation $2\cos^3\theta - \cos^2\theta + \cos\theta - 1 = 0$ has roots $\cos a$, $\cos b$ and $\cos c$.						
	Using appropriate	riate information from parts (i) and (ii), prove that	2				
$\sec a + \sec b + \sec c = 1$.							
c)	(i)	Sketch the curve $y = 2\cos x - 1$ for $-\pi \le x \le \pi$. Mark clearly					
		where the graph crosses each axis.	2				
	(ii)	Find the volume generated by the rotation through a complete					
		revolution about the x axis of the region between the x-axis					
		and that part of the curve $y = 2\cos x - 1$ for which	_				
		$ x \le \pi$ and $y \ge 0$	3				
	C	End of Question 5					



c)

Question 6 continued



A mould for a container is made by rotating the part of the curve $y = 4 - x^2$ which lies in the first quadrant through one complete revolution about the *y*axis. After sealing the base of the container, water is poured through a hole in the top. When the depth of water in the container is *h* cm, the depth is

changing at a rate of
$$\frac{10}{\pi(4-h)}$$
 cms⁻¹.

(i) Show that when the depth is *h* cm, the surface area
$$S \text{ cm}^2$$
 of
the top of the water is given by $S = \pi (4-h)$.

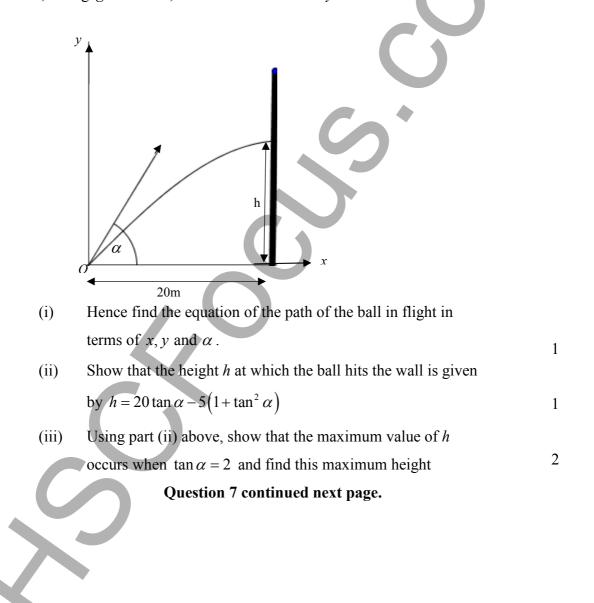
3

(ii) Find the rate at which the surface area of the water is changing when the depth of the water is 2cm.

End of Question 6.

Question 7 (12 marks).

a) A softball player hits the ball from ground level with a speed of 20 m/s and an angle of elevation α . It flies toward a high wall 20m away on level ground. Taking the origin at the point where the ball is hit, the derived expressions for the horizontal and vertical components of x and y of displacement at the time t seconds, taking $g = 10 \text{ m/s}^2$, are $x = 20t \cos \alpha$ and $y = -5t^2 + 20t \sin \alpha$



Question 7 continued

b) A particle of unit mass moves in a straight line. It is placed at the origin on the *x*-axis and is then released from rest. When at position *x*, its acceleration is given by:

$$-9x + \frac{5}{(2-x)^2}$$

Prove that the particle ultimately moves between two points on the *x*-axis and find these points.

c)

(i) For any angles α and β show that

$$\tan \alpha + \tan \beta = \tan (\alpha + \beta) [1 - \tan \alpha \tan \beta]$$

3

1

4

(ii) Prove, by mathematical induction, that

 $\tan\theta\tan 2\theta + \tan 2\theta\tan 3\theta + \dots + \tan n\theta\tan(n+1)\theta = \tan(n+1)\theta\cot\theta - (n+1)$

for all positive integers *n*

End of Question 7.

End of Examination.

This page is intentionally left blank