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Marking Guidelines  Mathematics Extension 1   CSSA Trial HSC  2006    
Question 1 
a. Outcomes assessed :  H5 

Marking Guidelines 
           Criteria Marks 

• writes primitive function 
• evaluates by substitution of limits 

1 
1 

 

Answer 
 

    
sec2x tan 2x dx

0

π
6⌠ 

⌡ 
 = 1

2
sec2x[ ]0

π
6 = 1

2
sec π

3
− sec0( )= 1

2
2 −1( )= 1

2
 

 
 
b. Outcomes assessed :  P4 

Marking Guidelines 
           Criteria Marks 

• substitutes gradients into expression for   tanθ  
• calculates θ  to required accuracy 

1 
1 

 

Answer 
  

    

    

3x − y − 2 = 0 x + 2y − 3 = 0
y = 3x − 2 y = − 1

2
x + 3

2

Gradient is 3 Gradient is − 1
2

 
Acute angle θ  between the lines is given by 

  
tanθ =

3 − − 1
2( )

1+ 3 − 1
2( )

= 7 .    

   ∴θ ≈ 82° (to the nearest degree) 
 
c. Outcomes assessed : PE3,  P4 

Marking Guidelines 
           Criteria Marks 

i  • shows     P 1( )= 0 by substitution 

ii • deduces that equation    P x( )= 0 has 3 real roots provided      x2 + kx+ 1= 0 has real roots. 
   • finds discriminant of this quadratic in terms of  k and realizes   ∆ ≥ 0 for real roots 
   • states values of k  

1 
 

1 

1 
1 

 

Answer 
 

i.      P 1( )= 1+ k −1( )+ 1− k( )−1= 0. 

ii. Equation     P x( )= 0 has 3 real roots if  equation     x2 + kx+ 1= 0 has two real roots. 

    For this quadratic equation,       ∆ = k2 − 4 ≥ 0 for k 2 ≥ 4. 
     Hence      P x( )= 0  has 3 real roots  for      k ≤ −2 or k ≥ 2. 
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d. Outcomes assessed :  PE2,  PE3 
Marking Guidelines 

           Criteria Marks 
ii  • quotes the alternate segment theorem in circle APB  
iii • quotes theorem about angles standing on the same arc (or chord) in circle AQB  
iv • writes a sequence of deductions leading to a test for BCDP to be cyclic 
    • supports these deductions with reasons 

1 
1 
1 
1 

 

Answer 
 

     

P
D

A
C

Q

B
 

ii. In circle APB, angle between tangent DP and  
    chord PA is equal to the angle subtended by PA  
    in the alternate segment at B.  
    Hence    ∠DPA = ∠PBA . 
 
iii. In circle AQB, angles subtended by the same  
    arc CA at points B and Q on the circumference  
    are equal.  
   Hence    ∠CQA = ∠CBA . 

iv.             ∠QDP + ∠DPQ + ∠DQP = 180° (Angle sum of   ∆QPD  is   180°) 
   But    ∠QDP = ∠CDP ,    ∠DPQ = ∠DPA ,    ∠DQP = ∠CQA     (Q, C, D collinear;  P, A, Q collinear ) 
   Hence      ∠CDP + ∠DPA+ ∠CQA =180° . 
                 ∴∠CDP + ∠PBA + ∠CBA = 180°    (    ∠DPA = ∠PBA , ∠CQA = ∠CBA  shown above) 
   But     ∠PBA + ∠CBA = ∠PBC                     ( by addition of adjacent angles) 
                ∴∠CDP + ∠PBC = 180°  
   Hence  BCDP is a cyclic quadrilateral  (one pair of opposite angles supplementary) 
                                   
 Question 2 
a. Outcomes assessed :  H5 

Marking Guidelines 
           Criteria Marks 

• uses the equivalence of expressions     3
x and e x ln 3 

• derives the equivalent exponential function with base e. 
1 
1 

 

Answer 
 

          3x = eln 3x
= e x ln 3  .    Hence   

    

d
dx

3x =
d
dx

ex ln 3 = ln 3 ex ln 3 = 3x ln 3 

 
b. Outcomes assessed :  P4 

Marking Guidelines 
           Criteria Marks 

• applies an appropriate process to determine the coordinates 
• calculates both coordinates correctly 

1 
1 
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Answer 
 

      

A −3 , 7( ) B 4 , −2( )

3              :            2

P
3 × 4 + 2 × −3( )

3+ 2
,

3 × −2( ) + 2 × 7
3 + 2

 

 
 

 

 
 
 

 
Hence the point of internal division is  

    P
6
5 , 8

5( ). 

 
c. Outcomes assessed :  H5 

Marking Guidelines 
           Criteria Marks 

• uses double angle identities for sine and cosine 
• rearranges and factorises resulting equation 
• solves     cos x = 0  in required domain 
• solves     tan x = 1 in required domain 

1 
1 
1 
1 

 

Answer 

   

    

1+ cos2x = sin 2x , 0 ≤ x ≤ 2π

2cos2 x = 2 sin xcos x

cos x cos x − sin x( )= 0

 

    

∴cos x = 0 or cos x = sin x
1= tan x

∴ x = π
2 , 3π

2 or x = π
4 , 5π

4

∴ x = π
4

, π
2

, 5π
4

, 3π
2

 

 
d. Outcomes assessed :  P4,  PE3 

Marking Guidelines 
           Criteria Marks 

i   • finds gradients of OP and OQ and sets product equal to   −1 
ii  • uses appropriate rectangle property to find the coordinates of R. 
iii • writes y coordinate of R in terms of  sum and product of p and q. 
    • substitutes for sum and product of p and q  to find Cartesian equation. 

1 
1 
1 
1 

 

Answer 
 

i  Gradient 
    
OP =

ap 2

2ap
= 1

2
p .    Similarly  gradient      OQ = 1

2
q . 

     ∴OP⊥OQ ⇒ 1
2

p . 1
2
q = −1              ∴ pq = −4 

 
ii The diagonals of a rectangle bisect each other. Hence M is the midpoint of OR. 
   Hence at R,  

    
1
2

x + 0( )= a p + q( ) and 1
2

y + 0( )= 1
2

a p 2 + q 2( ).   
                              

    
∴ x = 2a p + q( ) and y = a p 2 + q 2( ) 

 

iii At R,  

    

y = a p + q( )2
− 2pq{ }= a

x
2a

 

 
 

 

 
 

2

+ 8
 
 
 

  

 
 
 

  
 

     Hence locus of R  has equation      x
2 = 4a y − 8a( ). HSC
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Question 3 
a. Outcomes assessed :  P5,  P8,  H6,  HE4 

Marking Guidelines 
           Criteria Marks 

i   • shows     f (−x) = f (x)  to deduce function  f  is even 
ii  • shows formally that required limit is 1 
iii • finds the first derivative, showing it is zero at the origin 
    • shows the origin is a maximum turning point by applying first or second derivative test 
iv • shows the two vertical asymptotes and the central branch of the curve 
    • shows the horizontal asymptote and the remaining branches of the curve 
v  • makes x the subject, interchanges x and y  to obtain equation for the inverse     g

−1    
    • writes the domain of the inverse function 

1 
1 
1 
1 
1 
1 
 

1 
1 

 

Answer 

i. 

    

f −x( )=
−x( )2

−x( )2
−1

=
x2

x2 −1
= f x( ),  

        x ≠ ±1.  Hence f  is an even function. 

ii. 

    

lim
x→∞

f x( )= lim
x→∞

1
1− 1

x2

=
1

1− 0
=1 

Curve has horizontal asymptote     y = 1 as x → ±∞
 

 

iii. 

    

dy
dx

=
2x x2 −1( )− x2 . 2x

x2 −1( )2  

           

    

=
−2x

x2 −1( )2  

   
    
∴

dy
dx

= 0 when x = 0 

 

Sign of
dy
dx −1 0 1

__+ +
x

Curve

0

 
 

Hence    0 , 0( ) is a maximum turning point.

iv. 
y

xO 1−1

x = −1 x = 1

y = 1

y =
x 2

x2 − 1

 
 

v.   
    
y = x2

x2 −1
, x ≥ 0 

      

    

y x2 −1( )= x2

yx2 − y = x2

yx2 − x2 = y

x2 y −1( )= y

x2 =
y

y −1

    
∴ for the function g , x =

y
y −1

, since x ≥ 0 .  

Interchanging x and y,    
    
g−1 x( )=

x
x −1

. 

Inspection of the graph of    y = f x( ) shows that the  

range of the function g  is     y : y ≤ 0 or y > 1{ }. 

Hence the domain of  the inverse function     g
−1   is  

    x : x ≤ 0 or x >1{ }. 
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b. Outcomes assessed :  HE2 
Marking Guidelines 

           Criteria Marks 
• verifies that statement true for     n =1 
• writes LHS of      k + 1( ) th   statement  in terms of  RHS  of      k th  statement (assumed true) 

• rearranges resulting expression into form of RHS of      k + 1( ) th  statement 
• deduces the required result, showing understanding of the process of mathematical induction  

1 
1 
 

1 
1 

 

Answer 

Let      S n( ), n = 1, 2, 3, ...   be the sequence of statements  
    

r + 2
r r + 1( )2 r

r=1

n

∑ = 1−
1

n +1( )2 n
, n = 1, 2, 3, ... 

Consider     S 1() :           
    
LHS =

3
1× 2 × 2

=
4 −1

2 × 2 1
= 1−

1
2 × 2 1

= RHS .          ∴S 1( ) is true. 

If    S k( ) is true :          
    

r + 2
r r + 1( )2 r

r=1

k

∑ = 1−
1

k + 1( )2 k
**        

Consider      S k + 1( ) :     
    
LHS =

r + 2
r r + 1( )2 r

r=1

k +1

∑  

                                              

    

=
r + 2

r r + 1( )2 r
r=1

k

∑ +
k + 1( )+ 2

k +1( ) k + 2( )2 k +1

= 1 −
1

k +1( )2 k
+

k + 1( )+ 2

k +1( ) k + 2( )2 k +1
if S k( )is true, using * *

= 1 −
2 k + 2( )− k + 3( )
k +1( ) k + 2( )2 k +1

= 1 −
k + 1

k +1( ) k + 2( )2 k +1

= 1 −
1

k + 2( )2 k +1

= RHS

 

 

Hence if    S k( ) is true, then     S k + 1( ) is true. But     S 1() is true, hence     S 2( ) is true, and then     S 3( ) is true and so 

on. Hence  by mathematical induction   S n( ) is true for all positive integers      n ≥1. 
 
Question 4 
a. Outcomes assessed :  HE4 

Marking Guidelines 
           Criteria Marks 

• makes  x  the subject of the equation of the curve 
• expresses the volume as a definite integral with respect to y with integrand     tan2 1

2 y( )   
• uses an appropriate trig. identity to find the primitive function 
• substitutes the limits to evaluate the exact volume 

1 
1 
1 
1 HSC
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Answer 
 

      

    

y = 2 tan−1 x
1
2

y = tan−1 x

tan 1
2 y( )= x

 

  Hence volume is  V cubic units  where 

    
    
V = π tan2 1

2
y( ) dy

0

π
2⌠ 

⌡ 
  

    

V = π sec2 1
2 y( )−1{ } dy

0

π
2⌠ 

⌡ 
 

= π 2 tan 1
2 y( )− y[ ]

0

π
2

= π 2 tan π
4

− tan 0( )− π
2

− 0( ){ }
= π 2 − π

2{ }

 

Hence volume is    
1
2 π 4− π( ) cubic units. 

 
b. Outcomes assessed :  H5,  PE3 

Marking Guidelines 
           Criteria Marks 

i  • writes equation using expressions for areas of segment and sector 
   • simplifies to obtain required equation 
ii • writes second approximation in terms of      f 2( ), ′ f 2( ) where f θ( )= θ − 2sin θ  
   • evaluates expression for second approximation correct to 2 decimal places 

1 
1 
 

1 
1 

 

Answer 
 

i.        area segment = 1
2

area sector  

     

    

1
2 r 2θ − 1

2 r 2 sin θ = 1
4 r 2θ

1
4 r 2θ − 1

2 r 2 sin θ = 0

r 2 θ − 2sin θ( )= 0

 

        ∴r ≠ 0 ⇒ θ − 2sin θ = 0 

ii.     Let        f θ( )= θ − 2sin θ  

      Then      
′ f θ( )= 1− 2cosθ  

      Using Newton’s method with   θ 1 = 2, 

      
    
θ 2 = 2 −

f 2( )
′ f 2( ) ≈ 2 −

0 ⋅1814
1⋅ 8323

 

    Hence second approximation is   1⋅ 90 (to 2 dec. pl.) 
 
c. Outcomes assessed :  HE3 

Marking Guidelines 
           Criteria Marks 

i  • writes numerical expression for required probability 
   • evaluates probability as a fraction 
ii • writes numerical expression for required probability 
   • evaluates probability as a fraction 

1 
1 
1 
1 

 

Answer 
 

  Probability distribution is Binomial with     n = 6, p = 1
3
, q = 2

3
. 

i.     P exactly 2 correct( )=6C2
1
3( )2

2
3( )4

=15× 16
729 = 80

243  

ii. 
    
P exactly 1correct out of first 5, then 6th correct( )=5C1

1
3( )1

2
3( )4

× 1
3

= 5× 16
243

× 1
3

= 80
729
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Question 5 
a. Outcomes assessed :  HE6 

Marking Guidelines 
           Criteria Marks 

• writes dx in terms of du and converts x limits to u limits 
• writes integrand in terms of u 
• finds primitive function in terms of u 
• evaluates integral in simplest exact form by substitution of limits 

1 
1 
1 
1 

 

Answer 
 

      
    

u = x −1
du = dx

 

 

   
    

x = 0 ⋅5 ⇒ u = −0 ⋅5
x =1⋅ 5 ⇒ u = 0 ⋅ 5

 

 

   
    

2x − x2 = 2 u + 1( )− u 2 + 2u +1( )
= 1− u 2

 

     

    

1

2x − x2
dx

0⋅5

1⋅5⌠ 

⌡ 
 =

1

1− u2
du

−0⋅5

0⋅5⌠ 

⌡ 
 

= sin −1 u[ ]
−0⋅5

0⋅5

= π
6

− − π
6( )

= π
3

 

 
 
b. Outcomes assessed :  P4,  HE5,  HE7 

Marking Guidelines 
           Criteria Marks 

i  • uses similar triangles or tangent ratio to write r in terms of h 

ii • writes  
  

dr
dt

  in terms of  
  

dh
dt

 

   • substitutes values of  h and  
  

dh
dt

 

   • finds required rate 

1 
 

1 
 

1 
 

1 
 

Answer 
 

i. The ray of light from P makes equal 
   angles with the horizontal in both right 
   triangles. Corresponding sides in these 
   similar triangles are in proportion. 

      
    
∴

r
6

=
10
h

and hence r =
60
h

 

ii.      
    

dr
dt

=
dr
dh

.
dh
dt

= −
60
h 2

×
dh
dt

  

        But  
    

dh
dt

= − 0 ⋅1.    Hence when      h = 5, 

         
    

dr
dt

=
60
25

× 0 ⋅1= 0 ⋅ 24 

       Hence  r   is increasing at a rate of    0 ⋅ 24 cm s−1 . 
 
c. Outcomes assessed :  HE3 

Marking Guidelines 
           Criteria Marks 

i   • differentiates     
1
2

v 2 to find  a  in terms of  x 
ii  • states the centre of the motion 
    • states the amplitude of the motion 
iii • finds the maximum speed 

1 
1 
1 
1 
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Answer 
 

i.    
    
a =

d
dx

1
2
v 2( )=

d
dx

16 + 4x − 2x 2( )                 ∴ a = 4 − 4x  

 
ii.     

    
v 2 = 4 −x2 + 2x + 8( ) 

         ∴v 2 = 4 x + 2( )4 − x( ) 
          v

2 ≥ 0 ⇒ − 2 ≤ x ≤ 4 

     

     The midpoint of this interval is     x =1. 
     Hence centre of motion is  1 m  to the right of  O  
     and the amplitude is  3 m.

 

iii. Maximum speed occurs at the centre of the motion. 
         x =1 ⇒ v 2 = 36.       Hence maximum speed is    6 ms−1 
 
Question 6 
a. Outcomes assessed :  H5 

Marking Guidelines 
           Criteria Marks 

i  • states maximum rate of flow 
ii • expresses total amount of water as a definite integral 
   • uses an appropriate trig. identity to find the primitive 
   • evaluates by substitution of limits, giving answer to nearest litre 

1 
1 
1 
1 

 

Answer 
 

i. 

   
    

0 ≤ sin 2 t ≤ 1
∴ 0 ≤ R ≤ 4

 

  Maximum rate of flow is    4 kL/min , 
  since     R = 4 when t = π

2
.  

ii.       
    

4sin 2 t dt
0

π⌠ 

⌡ 
 = 2 1− cos2t( ) dt

0

π⌠ 

⌡ 
  

                                 

    

= 2t − sin 2t[ ]0

π

= 2 π − 0( )− sin 2π − sin 0( )
= 2π

 

 

    ∴2π kL ≈ 6 ⋅ 283 kL (to the nearest L)  flows into the tank.
 
b. Outcomes assessed :  HE3 

Marking Guidelines 
           Criteria Marks 

i  • substitutes one pair of N, t values to obtain one equation in  A and B 
   • similarly obtains a second equation in A and B 
   • solves simultaneously to evaluate A and B 
ii • states limiting value of N. 

1 
1 
1 
1 

 

Answer 
i.       N = A + Be−t  

       

    

60 = A + B e − ln 2

= A + B e
ln 1

2

= A + 1
2
B

                   

    

36 = A + B e − ln 5

= A + B e
ln 1

5

= A + 1
5
B

 

     ∴ 120 = 2 A + B            and           180 = 5A + B  

   

    By subtraction,       3A = 60 
       ∴ A = 20 and B = 80 
 
ii.   As      t → ∞, N → A + B × 0 = 20 
     Hence limiting population size is 20. 
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c. Outcomes assessed :  P4,  HE5 
Marking Guidelines 

           Criteria Marks 
i  • establishes result algebraically 

ii • writes 
  

dt
dx

  as sum of  two algebraic fractions using (i) 

   • integrates and evaluates constant to find t as a function of x 
   • rearranges to find x as a function of  t 

1 
 

1 
 

1 
1 

 

Answer 
 

i.   
    

1
x

+
1

2 − x
=

2 − x( )+ x

x 2 − x( ) =
2

x 2 − x( )
 

 
ii.   Initially particle is at     x =1 moving right with      v = 1

2
. 

      But  
    
v =

x 2 − x( )
2

and a = v dv
dx

.     Hence  if  particle reaches      x = 2,   

         v = a = 0  and  particle will remain at rest at this point.    Hence      1 ≤ x ≤ 2.  
 

              

    

dx
dt

=
x 2 − x( )

2
dt
dx

=
2

x 2 − x( )
= 1

x
+ 1

2 − x

 

     

                  

    

t = ln x − ln 2− x( )+ c

= ln
x

2 − x

 

 
 

 

 
 + c (c constant)

 

         
    

t = 0
x =1

 
 
 

⇒
ln1 + c = 0

∴ c = 0
 

    

∴ t = ln
x

2 − x

 

 
 

 

 
 

− t = ln
2 − x

x

 

 
 

 

 
 

e − t =
2 − x

x

e − t =
2
x

−1

1+ e − t =
2
x

∴ x =
2

1+ e − t

 

 
Question 7 
a. Outcomes assessed :  HE3 

Marking Guidelines 
           Criteria Marks 

i   • uses integration to find expression for x 
    • uses integration to find expression for y 
ii  • substitutes given values to write two equations in V and θ  
    • finds exact value of V 
    • finds required approximate value of θ  to required accuracy 
iii • finds horizontal and vertical components of impact velocity 
    • finds speed of impact to required accuracy 
    • finds angle of impact to required accuracy 

1 
1 
1 
1 
1 
1 
1 
1 
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Answer 
 

i.        Horizontal component                                                          Vertical component 

                                                         x
••

= 0 

     x
•

= c1 , c1 const . 

    

t = 0

x
•

= V cosθ

 
 
 

  
⇒ c1 = V cosθ          ∴ x

•

= V cosθ  

    x = V cosθ( )t + c2 , c 2 const   

    

t = 0
x = 0

 
 
 

⇒ c2 = 0                         ∴ x = V cosθ( )t  

                                                      y
••

= −10 

    y
•

= −10 t + c3 , c3 const . 

    

t = 0

y
•

= V sin θ

 
 
 

  
⇒ c3 = V sin θ         ∴ y

•

= −10 t + V sin θ  

 

    y = −5 t 2 + V sin θ( )t + c 4 , c 4 const  

    

t = 0
y = 0

 
 
 

⇒ c4 = 0                           ∴ y = V sin θ( )t − 5t 2  

 
 

ii.  When      t = 4,         x = 64 and y = −32 

   
    

4 V cosθ = 64
4V sin θ − 80 = −32

 
 
 

         
    
∴

V cosθ =16
V sin θ =12

 
 
 

 

 

      

    

∴V 2 cos2 θ + sin 2 θ( )=162 + 122

∴V 2 = 42 42 + 32( )
 

      Also   cosθ = 4
5

and sin θ = 3
5
 

         ∴V = 20, θ ≈ 36°5 ′ 2  
 

iii.  When      t = 4,  

           x
•

= V cosθ =16 and y
•

= −40 + V sin θ = −28 
 

              

16

28
v

α

α

 
 

    v
2 = 162 + 282 ⇒ v ≈ 32 ⋅ 2 

        tanα = 7
4

⇒ α ≈ 60°1 ′ 5  

Speed of impact is    32 ms−1 (to nearest integer)  
Angle of impact with beach is   60°1 ′ 5   (nearest minute).

 

b. Outcomes assessed :  H9,  HE3 
Marking Guidelines 

           Criteria Marks 
i  • writes expansion as required 
ii • differentiates both sides with respect to x 
   • substitutes     x =1 
   • rearranges to obtain required identity 

1 
1 
1 
1 

 

Answer 

i.     x 1+ x( )n
≡ x+nC1x2+nC2x3 + ...+nCn−1x

n + xn +1 
 

ii. Differentiation with respect to x gives 

                                  1+ x( )n
+ nx 1+ x( )n−1

≡ 1+ 2 nC1x + 3 nC2x2 + ...+ n nCn−1x
n−1 + n + 1( )x n  

    Substituting      x =1,              2
n + n . 2n−1 =1+ 2 nC1 + 3 nC2 + ...+ n nCn−1 + n +1( ) 

    
    
∴ 2 nC1 + 3 nC2 + ... + n nCn−1 = n + 2( )2n−1 − n + 2( )= n + 2( )2n−1 −1( ) 

 HSC
Fo

cu
s.c

om




