	epende chools			
Schools		5077		
04 IS	1a	Find the domain of the function $f(x) = \log_e \left(\frac{5-x}{3-x}\right)$.	3	
04	1b	Consider the curves $y = x^3$ and $y = x^2 - x$.		
IS		(i) Show that the curves intersect at the point where $x = 0$.	1	
		(ii) Find the acute angle between the curves at this point.	2	
04 IS	1c	If $P(x) = x^4 - 3x^3 + ax^2 - ax - 12$ is divisible by $(x - 3)$, find the value of <i>a</i> .	2	
04	1d	B In the diagram, AB = 10 cm,	2	
IS		$10 \text{ cm} \qquad \text{CD} = 15 \text{ cm and AC} = x \text{ cm}.$		
		Find the value of x.		
		A		
		15 cm C x		
		D		
04	1e	Six people are to be placed around a circular table. Two of them want to sit	2	
IS		together. In how many ways can the table be arranged?		
04	2a	Find the exact value of $\int_{1}^{1} \sqrt{4-x^2} dx$, using the substitution $x = 2 \sin \theta$.	3	
IS				
04	2b	For the expansion of the expression $(x - \frac{3}{x})^8$, find the term independent of x.	3	
IS				
04	2c	(i) Sketch the graph of $y = 2\tan^{-1} 3x$.	2	
IS		(ii) State the domain and range of the function.	1	
04	2d	Solve the equation $3\cos\theta - 4\sin\theta = 5$, for $-\pi \le \theta \le \pi$.	3	
IS		Express your answers correct to 2 decimal places.		
04	3a	In how man ways can 8 prefects be chosen from a group of 20 nominees?	1	
IS		π		
04 IS	3b	Find the exact value of $\int_{12}^{\frac{\pi}{12}} \sin^2 2x dx$.	3	
IS				
04 IS	3c	Use Mathematical Induction to show that $\sum_{r=1}^{n} 4r - 3 = 2n^2 - n$.	3	
04	3d	Jaime wants to use Newton's Method to obtain the zero of $\sqrt[3]{x} = 0$.		
IS	- 4	(i) Using Newton's Method once with a first approximation of $x = 1$, obtain a	2	
-		second approximation.	—	

			second approximation, x_2 , is such that $ x_2 > x_1 $.	
			Explain the significance of this result.	
4	4a	A par	ticle is moving so that its displacement, x cm, at any time, t seconds, is given	
S		by the	e equation $x = 2\cos(3t + \frac{\pi}{6})$.	
		(i)	Show that the particle movies in Simple Harmonic Motion.	
		(ii)	State the period of the motion.	
		(iii)	When does the particle first come to rest after $t = 0$?	
4	4b	P(2 <i>ap</i>	, ap^2) is a point on the parabola $x^2 = 4ay$. The normal at P cuts the x axis at S	
S		and t	ne y axis at T.	
		(i)	Draw a half page sketch to show this information.	
		(ii)	State the equation of the normal to the parabola at P and hence show that S	
			is the point $(ap(2 + p^2), 0)$ and that T is the point $(0, a(2 + p^2))$.	
		(iii)	Find the value(s) of p such that P is the midpoint of ST.	
4	4c	(i)	Explain why the probability of obtaining 2 heads and a tail when three coins	
5			are tossed is $\frac{3}{8}$.	
		(ii)	Sian tosses three coins 10 times in a row. Calculate the probability of	
			obtaining 2 heads and a tail at least 2 times. Give your answer correct to 3	
			5	
			significant figures.	
4	5a	The ra	significant figures. ate at which a body cools in air is proportional to the difference between the	
	5a		significant figures. ate at which a body cools in air is proportional to the difference between the erature, <i>T</i> , of the body and the constant surrounding temperature, <i>S</i> . This can	
	5a	temp	ate at which a body cools in air is proportional to the difference between the erature, <i>T</i> , of the body and the constant surrounding temperature, <i>S</i> . This can	
	5a	tempe be ex	ate at which a body cools in air is proportional to the difference between the erature, T , of the body and the constant surrounding temperature, S . This can pressed as $\frac{dT}{dt} = k(T - S)$, where t is in minutes and k is a constant.	
	5a	temp	ate at which a body cools in air is proportional to the difference between the erature, T , of the body and the constant surrounding temperature, S . This can pressed as $\frac{dT}{dt} = k(T - S)$, where t is in minutes and k is a constant. Show that $T = S + Be^{kt}$, where B is a constant, is a solution of the above	
	5a	tempe be ex (i)	ate at which a body cools in air is proportional to the difference between the erature, T , of the body and the constant surrounding temperature, S . This can pressed as $\frac{dT}{dt} = k(T - S)$, where t is in minutes and k is a constant. Show that $T = S + Be^{kt}$, where B is a constant, is a solution of the above equation.	
	5a	tempe be ex	ate at which a body cools in air is proportional to the difference between the erature, <i>T</i> , of the body and the constant surrounding temperature, <i>S</i> . This can pressed as $\frac{dT}{dt} = k(T - S)$, where <i>t</i> is in minutes and <i>k</i> is a constant. Show that $T = S + Be^{kt}$, where <i>B</i> is a constant, is a solution of the above equation. If a particular body cools from 100° to 80° in 30 minutes, find the	
	5a	tempe be ex (i)	ate at which a body cools in air is proportional to the difference between the erature, <i>T</i> , of the body and the constant surrounding temperature, <i>S</i> . This can pressed as $\frac{dT}{dt} = k(T - S)$, where <i>t</i> is in minutes and <i>k</i> is a constant. Show that $T = S + Be^{kt}$, where <i>B</i> is a constant, is a solution of the above equation. If a particular body cools from 100° to 80° in 30 minutes, find the temperature of the body after a further 30 minutes, given the surrounding	
	5a	tempe be ex (i)	ate at which a body cools in air is proportional to the difference between the erature, <i>T</i> , of the body and the constant surrounding temperature, <i>S</i> . This can pressed as $\frac{dT}{dt} = k(T - S)$, where <i>t</i> is in minutes and <i>k</i> is a constant. Show that $T = S + Be^{kt}$, where <i>B</i> is a constant, is a solution of the above equation. If a particular body cools from 100° to 80° in 30 minutes, find the temperature of the body after a further 30 minutes, given the surrounding temperature remains constant at 25°. Give your answer to the nearest	
5		tempe be ex (i)	ate at which a body cools in air is proportional to the difference between the erature, <i>T</i> , of the body and the constant surrounding temperature, <i>S</i> . This can pressed as $\frac{dT}{dt} = k(T - S)$, where <i>t</i> is in minutes and <i>k</i> is a constant. Show that $T = S + Be^{kt}$, where <i>B</i> is a constant, is a solution of the above equation. If a particular body cools from 100° to 80° in 30 minutes, find the temperature of the body after a further 30 minutes, given the surrounding temperature remains constant at 25°. Give your answer to the nearest degree,	
5 4	5a	tempe be ex (i)	ate at which a body cools in air is proportional to the difference between the erature, <i>T</i> , of the body and the constant surrounding temperature, <i>S</i> . This can pressed as $\frac{dT}{dt} = k(T - S)$, where <i>t</i> is in minutes and <i>k</i> is a constant. Show that $T = S + Be^{kt}$, where <i>B</i> is a constant, is a solution of the above equation. If a particular body cools from 100° to 80° in 30 minutes, find the temperature of the body after a further 30 minutes, given the surrounding temperature remains constant at 25°. Give your answer to the nearest degree, A man of height 2 metres throws a ball	
S 4		tempe be ex (i)	ate at which a body cools in air is proportional to the difference between the erature, <i>T</i> , of the body and the constant surrounding temperature, <i>S</i> . This can pressed as $\frac{dT}{dt} = k(T - S)$, where <i>t</i> is in minutes and <i>k</i> is a constant. Show that $T = S + Be^{kt}$, where <i>B</i> is a constant, is a solution of the above equation. If a particular body cools from 100° to 80° in 30 minutes, find the temperature of the body after a further 30 minutes, given the surrounding temperature remains constant at 25°. Give your answer to the nearest degree, A man of height 2 metres throws a ball from <i>M</i> to the roof of a 15 metre high	:
4 S 4 S		tempe be ex (i)	ate at which a body cools in air is proportional to the difference between the erature, <i>T</i> , of the body and the constant surrounding temperature, <i>S</i> . This can pressed as $\frac{dT}{dt} = k(T - S)$, where <i>t</i> is in minutes and <i>k</i> is a constant. Show that $T = S + Be^{kt}$, where <i>B</i> is a constant, is a solution of the above equation. If a particular body cools from 100° to 80° in 30 minutes, find the temperature of the body after a further 30 minutes, given the surrounding temperature remains constant at 25°. Give your answer to the nearest degree, A man of height 2 metres throws a ball from <i>M</i> to the roof of a 15 metre high building. He throws the ball at an initial	
S 4		tempe be ex (i)	ate at which a body cools in air is proportional to the difference between the erature, <i>T</i> , of the body and the constant surrounding temperature, <i>S</i> . This can pressed as $\frac{dT}{dt} = k(T - S)$, where <i>t</i> is in minutes and <i>k</i> is a constant. Show that $T = S + Be^{kt}$, where <i>B</i> is a constant, is a solution of the above equation. If a particular body cools from 100° to 80° in 30 minutes, find the temperature of the body after a further 30 minutes, given the surrounding temperature remains constant at 25°. Give your answer to the nearest degree, A man of height 2 metres throws a ball from <i>M</i> to the roof of a 15 metre high building. He throws the ball at an initial	

Between which two angles of projection must he throw the ball to ensure it lands on **5** the roof of the building?

(Assume $\ddot{x} = 0$ and $\ddot{y} = -10$.)

200	- Inde	pendent	Schools That HSC Examination Mathematics Extension 1	age 3
04 IS	5c	(i)	By considering $(1 + x)^{n+3} = (1 + x)^n (1 + x)^3$, show that $\binom{n+3}{k} = \binom{n}{k} + 3\binom{n}{k-1} + 3\binom{n}{k-2} + \binom{n}{k-3}$	2
		(ii)	Between what values must k lie?	3
04	6a		AB is a tangent to the circle	
IS	Ua		AB is a tangent to the choice $AB EC and CD = AC.$	
13			Copy the diagram into your	
			booklet.	
		E	B Prove that AC ED.	
			D C	
04	6b		rticle is moving in a straight line. At time t seconds, it has displacement x	
IS			es from a fixed point O on the line, velocity v ms ⁻¹ and acceleration a ms ⁻² . The	9
			cle starts from O and you are given that $v = (2 - x)^2$.	
		(i)	Find an expression for <i>a</i> in terms of <i>x</i> .	1
		(ii)	Find an expression for x in terms of t.	3
		(iii)	Find the distance from O when the particle has a speed of 1 ms ⁻¹ .	1
04	6c	(i)	Given a function, $y = f(x)$, under what geometrical conditions would	2
IS			$f(x) = f^{-1}(x)$?	
		(ii)	Give an example of a function for which $f(x) = f^{-1}(x)$.	1
04	7a	(i)	Find $\frac{d}{dx}(x \cos^{-1}x - \sqrt{1-x^2})$.	2
IS		(ii)	Find the area between the curve $y = \cos x$, the y axis and the lines $y = \frac{1}{2}$	3
		(")	2	
			and $y = \frac{\sqrt{3}}{2}$.	
04	7b		$\uparrow v$ The diagram shows a unit square, ABCD	
IS	70		3+ where A(1, 0), B(1, 1), C(2, 1), D(2, 0).	,
10			2+ Copy the diagram into your workbook.	
			1 + B - C	
			-1 1 2 3	
			-1.0	
		(i)	A line, <i>I</i> , passing through the origin with gradient <i>m</i> , cuts the sides AB and	1
			CD at P and Q respectively. Comment on the possible values of m .	
		(ii)	For what value(s) of <i>m</i> does the line, <i>l</i> , divide the area of the square in the	3
		. /	ratio 2:1?	_
		(iii)	Another line, k , passes through the origin with gradient, n , and cuts the	3
		()	square through sides AB and BC at S and T respectively. Show that it is not	
			square through sides AD and DC at 5 and 1 respectively. Show that it is not	

http://members.optuszoo.com.au/hscsupport/index.htm

A	1a. $x < 3$ and $x > 5$ 1b.(i) 45° 1c. $a = 2$ 1d. $x = 5$ 1e. $4! \times 2! = 48$ 2a. $\frac{2\pi}{3} + \sqrt{3}$ 2b. 5670
	2c.(ii) dom: all real x range: $y = -\pi \le x \le \pi$ 2d. -0.93 radians 3a. ${}^{20}C_8 = 125970$
	3b. $\frac{\pi}{24} - \frac{\sqrt{3}}{16}$ 3d.(i) -2 (ii) approximations do not converge 4a.(ii) $\frac{2\pi}{3}$ (iii) $\frac{5\pi}{18}$
	4b.(ii) $x = 2ap + ap^3$ (iii) $p = \pm 2$ 4c. 0.936 5a.(ii) 65° 5b.(ii) $45^\circ \le \alpha \le 79^\circ$
	5c.(ii) $3 < k < n$ 6b.(i) $a = -2(2 - x)^3$ (ii) $\frac{4t}{2t + 1}$ (iii) $x = 1$ 6c.(i) symmetrical about $y = x$.
	7a.(i) $\cos^{-1} x$ (ii) $\frac{\pi}{12}(\sqrt{3} - 2) + \frac{\sqrt{3} - 1}{2}$ 7b.(i) $0 \le x \le \frac{1}{2}$ (ii) 4:9, 2:9