Question 1

Begin a new page

Find the value of $\sum_{k=1}^{4} (-1)^k k!$ (a)

2

A(-2, -5) and B(1, 4) are two points. Find the acute angle θ between the line AB and the line x+2y+1=0, giving the answer correct to the nearest minute.

- The polynomial $P(x) = x^5 + ax^3 + bx$ leaves a remainder of 5 when it is divided by (x-2), where a and b are numerical constants.
 - (i) Show that P(x) is odd.

1

(ii) Hence find the remainder when P(x) is divided by (x+2).

2

(d)

ABCD is a cyclic quadrilateral. The tangent at A to the circle through A, B, C and D is parallel to BD.

- (i) Copy the diagram.
- (ii) Give a reason why $\angle ACB = \angle MAB$.

1

(iii) Give a reason why $\angle ACD = \angle ABD$.

1

(iv) Hence show that AC bisects $\angle BCD$.

2

Question 2

Begin a new page

Find $\frac{d^2}{dx^2} e^{x^2}$.

2

A(-1,4) and B(x,y) are two points. The point P(14,-6) divides the interval AB externally in the ratio 5:3. Find the coordinates of B.

(c) Find the number of ways in which the letters of the word EXTENSION can be arranged in a straight line so that no two vowels are next to each other.

3

(d)

 $P(2t, t^2)$ is a variable point which moves on the parabola $x^2 = 4y$. The tangent to the parabola at P cuts the x axis at T. M is the midpoint of PT.

(i) Show that the tangent PT has equation $tx - y - t^2 = 0$.

1

(ii) Show that M has coordinates $\left(\frac{3t}{2}, \frac{t^2}{2}\right)$.

2

(iii) Hence find the Cartesian equation of the locus of M as P moves on the parabola.

1

2

Question 3

Begin a new page

- (a) (i) By expanding $\cos (2A + A)$, show that $\cos 3A = 4\cos^3 A 3\cos A$.
 - (ii) Hence show that if $2\cos A = x + \frac{1}{x}$ then $2\cos 3A = x^3 + \frac{1}{x^3}$.
- (b) The function f(x) is given by $f(x) = \sqrt{x+6}$ for $x \ge -6$.
 - (i) Find the inverse function $f^{-1}(x)$ and find its domain.
 - (ii) On the same diagram, sketch the graphs of y = f(x) and $y = f^{-1}(x)$, showing clearly the intercepts on the coordinate axes. Draw in the line y = x.
 - (iii) Show that the x coordinates of any points of intersection of the graphs y = f(x) and $y = f^{-1}(x)$ satisfy the equation $x^2 x 6 = 0$. Hence find any points of intersection of the two graphs.

Question 4

Begin a new page

(a) Use Mathematical Induction to show that $5^n + 2(11^n)$ is a multiple of 3 for all positive integers n.

(b)

Two concentric circles with centre O have radii 2 cm and 4 cm. The points P and Q lie on the larger circle and $\angle POQ = x$, where $0 < x < \frac{\pi}{2}$.

- (i) If the area $A \text{ cm}^2$ of the shaded region is $\frac{1}{16}$ the area of the larger circle, show that x satisfies the equation $8\sin x 2x \pi = 0$.
- (ii) Show that this equation has a solution $x = \alpha$, where $0.5 < \alpha < 0.6$.
- (iii) Taking 0.6 as a first approximation for α , use one application of Newton's Method to find a second approximation, giving the answer correct to two decimal places.

Question 5

Begin a new page

- (a) Evaluate $\int_{1}^{49} \frac{1}{4(x+\sqrt{x})} dx$ using the substitution $u^{2} = x$, u > 0. Give the answer 4 in simplest exact form.
- (b) At any point on the curve y = f(x), the gradient function is given by $\frac{dy}{dx} = \sin^2 x$.

 4 Find the value of $f\left(\frac{3\pi}{4}\right) f\left(\frac{\pi}{4}\right)$.
- (c) A particle is performing Simple Harmonic Motion in a straight line. At time t seconds it has velocity v metres per second, and displacement x metres from a fixed point O on the line, where $x = 5 \cos \frac{\pi t}{2}$.
 - (i) Find the period of the motion.
 - (ii) Find an expression for v in terms of t, and hence show that $v^2 = \frac{\pi^2}{4} (25 x^2)$. Find the speed of the particle when it is 4 metres to the right of O.

Question 6

Begin a new page

(a)

A person on horizontal ground is looking at an aeroplane A through a telescope T. The aeroplane is approaching at a speed of 80 ms^{-1} at a constant altitude of 200 metres above the telescope. When the horizontal distance of the aeroplane from the telescope is x metres, the angle of elevation of the aeroplane is θ radians.

(i) Show that
$$\theta = \tan^{-1} \frac{200}{x}$$
.

(ii) Show that
$$\frac{d\theta}{dt} = \frac{16000}{x^2 + 40000}$$
.

- (iii) Find the rate at which θ is changing when $\theta = \frac{\pi}{4}$, giving the answer in degrees per second correct to the nearest degree.
- (b) A particle moves in a straight line. At time t seconds its displacement is x metres from a fixed point O on the line, its acceleration is $a \text{ ms}^{-2}$, and its velocity is $v \text{ ms}^{-1}$ where v is given by $v = \frac{32}{x} \frac{x}{2}$.
 - (i) Find an expression for a in terms of x.

(ii) Show that
$$t = \int \frac{2x}{64 - x^2} dx$$
, and hence show that $x^2 = 64 - 60 e^{-t}$.

(iii) Sketch the graph of x^2 against t and describe the limiting behaviour of the particle.

Begin a new page

- (a) Four fair dice are rolled. Any die showing 6 is left alone, while the remaining dice are rolled again.
 - (i) Find the probability (correct to 2 decimal places) that after the first roll of the dice, exactly one of the four dice is showing 6.
 - (ii) Find the probability (correct to 2 decimal places) that after the second roll of the dice exactly two of the four dice are showing 6.
- b) A particle is projected from a point O with speed 50 ms^{-1} at an angle of elevation θ and moves freely under gravity, where $g = 10 \text{ ms}^{-2}$.
 - (i) Write down expressions for the horizontal and vertical displacements of the particle at time t seconds referred to axes Ox and Oy.
 - (ii) Hence show that the equation of the path of the projectile, given as a quadratic equation in $\tan \theta$, is $x^2 \tan^2 \theta 500x \tan \theta + (x^2 + 500y) = 0$.
 - (iii) Hence show that there are two values of θ , $0 < \theta < \frac{\pi}{2}$, for which the projectile passes through a given point (X, Y) provided that $500 Y < 62500 X^2$.
 - (iv) If the projectile passes through the point (X, X) whose coordinates satisfy this inequality, and the two values of θ are α and β , find expressions in terms of X for $\tan \alpha + \tan \beta$ and $\tan \alpha \tan \beta$, and hence show that $\alpha + \beta = \frac{3\pi}{4}$.