Blakehurst High School CHEMISTRY

Year 12 Half Yearly Exam 2000

Time Allowed - 1¹/₂ hours

PART A – Attempt ALL questions Each question is work 1 mark Select the alternative A,B,C, or D that best answers the question Mark your answers in pencil on the Answer Sheet provided

- **1.** Arrhenius defined an acid as a substance that:
 - (A) reacts with active metals to produce hydrogen gas
 - (B) neutralizes bases
 - (C) forms hydrogen ions when dissolved in water
 - (D) donates protons
- 2. Which of these mixtures would function as a buffer in water solution?
 - (A) propanoic acid/sodium propanoate
 - (B) hydrochloric acid/sodium chloride
 - (C) nitric acid/sodium hydroxide
 - (D) ammonia/sodium sulphate
- 3. What is the $OH^{-}(aq)$ concentration (mol L⁻¹) in a 0.0800 mol L⁻¹ nitric acid solution?
 - (A) 0
 - (B) 1.25×10^{-13}
 - (C) 8.00×10^{-12}
 - (D) 1.00×10^{-7}
- 4. Which of these gases will dissolve in water to produce an acidic solution?
 - (A) methane
 - (B) amonia
 - (C) hydrogen
 - (D) sulphur dioxide
- 5. The following equations show some reactions of the hydrogen carbonate ion:

1. $H^+ + HCO_3^- \rightarrow H_2CO_3$ 2. $HCO_3^- + H_2O \rightarrow H_2CO_3 + OH^-$

3. $OH^- + HCO_3^- \rightarrow CO_3^{2-} + H_2O$

The hydrogen carbonate ion is acting as a Lowry-Bronsted base in:

(A) 2 and 3
(B) 1 only
(C) 1 and 3
(D) 1 and 2

6. A student named a compound that she had drawn as -1 methyl-5,7 - chlorohexane

Its structural formula is shown below:

C1 C1

CH₃ (CH₂)₃CH CH₂CH₂

The correct systematic name for this substance would be:

- (A) 5,7-chloroheptane
- (B) 1,3-dichloroheptane
- (C) 1,3-dichloro-6-methylheptane
- (D) 1,3-chloroheptane
- 7. Methane and steam can react to form carbon monoxide and hydrogen according to the equation:

$$CH_{4(g)} + H_2O_{(g)} \rightleftharpoons CO_{(g)} + 3H_{2(g)} \Delta H = +131 \text{ kJ}$$

4 moles of methane and 5 moles of steam are placed into a sealed 1 litre container which is heated to 450° C. Equilibrium is reached and measurements show that there is 1.5 moles of methane in the container. The number of moles of the other gases at equilibrium must be

	$H_2O_{(g)}$	CO _(g)	H _{2(g)}
(A)	5	0	0
(B)	1.5	1.5	4.5
(C)	2	2	6
(D)	2.5	2.5	7.5

8. The Ostwald process is used to manufacture nitric acid. One of the reactions occurring in the process is

$$2NO_{(g)} + O_{2(g)} \implies 2NO_{2(g)} \qquad \Delta H = + 114 \text{ kJ}$$

The forward reaction would be favoured most by using

- (A) high pressure, high temperature
- (B) high pressure, low temperature
- (C) high pressure, low temperature, catalyst
- (D) low pressure, high temperature, catalyst

9. In volumetric analysis, a burette, a pipette, and a titration flask are used. *Just before being used*, they must be rinsed with an appropriate liquid. Which must be rinsed with distilled water *just before being used*?

- (A) titration flask only
- (B) burette only
- (C) pipette only

- (D) burette and titration flask only
- 10. At a certain temperature, a chemist set up the equilibrium

 $2SO_{2(g)} + O_{2(g)} - 2SO_{3(g)}$

in a sealed 5.00 L flask

The amounts of the gases present at equilibrium were-

$SO_{2(g)}$	2.50 mol
$O_{2(g)}$	1.00 mol
$SO_{3(g)}$	4.00 mol

At the temperature, the value of the equilibrium constant for the reaction as written is

(A)	0.078
(B)	1.60
(C)	2.56
(D)	12.8

11. For a given reversible reaction, a catalyst will affect

- (A) ΔH for the forward reaction
- (B) the size of the equilibrium constant
- (C) the time to reach equilibrium
- (D) the yield of the products

12. Two hydrocarbons P and Q have the molecular formula $C_4H_{8.}$ P reacts with hydrogen gas in the presence of a nickel catalyst; Q does not react with hydrogen gas at all.

XX71 ' 1 C (1 C 11 '	• •		C D 100
Which of the following	nairs give	s correct possibilities	tor P and ()
which of the following	pund Sive	s conteet possionnies	

	Р	Q
(A)	methylpropene	cyclobutane
(B)	but –1- ene	butane
(C)	methylpropene	butane
(D)	butane	cyclobutane

13. In volumetric analysis, a standard solution

- (A) is placed in the flask during a titration
- (B) has a known accurate concentration
- (C) contains the indicator
- (D) has a concentration of $1.00 \text{ mol } \text{L}^{-1}$

- 14. 900 mL of water are added to 100 mL of a 0.270 mol L^{-1} potassium chloride solution. The concentration of the potassium ions is now
 - (A) $2.70 \text{ mol } L^{-1}$
 - (B) $2.43 \text{ mol } \text{L}^{-1}$
 - (C) $0.030 \text{ mol } \text{L}^{-1}$
 - (D) $0.027 \text{ mol } \text{L}^{-1}$

15. As you go across Period 2, the trend in bond type in the elements lithium \rightarrow flourine is

- (A) ionic \rightarrow covalent
- (B) metallic \rightarrow ionic
- (C) metallic \rightarrow covalent
- (D) metallic \rightarrow non-metallic
- 16. When diamond is melted, the forces that are overcome are
 - (A) dispersion forces between molecules
 - (B) dipole/dipole forces between molecules
 - (C) ionic bonds between ions
 - (D) covalent bonds between atoms
- **17.** The sodium atom and the sodium ion have the same
 - (A) radius
 - (B) atomic number
 - (C) first ionization energy
 - (D) electron configuration
- **18.** A solution of sodium hydroxide is added to a solution of propanoic acid. Which of these graphs best shows the change in pH as the base is added to the acid?

PART B

Attempt all questions Each question is worth 3 marks Answer all questions in the Answer book

19. The table below gives the formulas of several acids, and their conjugate bases. The table also gives the acid ionization constant, K_a , of each acid.

ACID	K_a	CONJUGATE BASE
hydrogen cyanide, HCN	6.17 x 10 ⁻¹⁰	CN
ethanoic acid, CH ₃ COOH	1.74 x 10 ⁻⁵	CH ₃ COO ⁻
nitric acid, HNO ₃	$2.0 \ge 10^{1}$	NO ₃
phenol, C ₆ H ₅ OH	$1.05 \ge 10^{-10}$	C ₆ H ₅ O ⁻
Nitrous acid, HNO ₂	7.08 x 10 ⁻⁴	NO ₂ -

- (a) Write the *formula* of the weakest acid in the table.
- (b) Write the *formula* of the weakest base in the table.
- (c) A solution of nitric acid is added to a solution of sodium ethanoate. An acid/base reaction involving ethanoate ions occurs. Write a balanced *ionic* equation for this acid/base reaction.
- **20.** The diagram below shows the electron-dot formula of ethane:

- (a) Draw the electron-dot formula of monochloroethane, C_2H_5Cl
- (b) Ethane has a boiling point of -89° C, while monochloroethane has a boiling point of $+12^{\circ}$ C. Give *two* reasons for the higher boiling point of monochloroethane

21. The table summarises properties of four different substances

Substance	Melting point	Boiling point	Electrical conductivity	Electrical conductivity
	$({}^{0}C)$	(^{0}C)	when a solid	when molten
Р	-25	87	none	none
Q	1200	3478	high	high
R	152	1457	none	high
S	600	2400	none	none

With a brief explanation of your choice, identify the substance which:

- (a) contains metallic bonds;
- (b) is a convalent array; (network)
- (c) would be most likely to yield a conducting solution in water
- 22. Methane and hydrogen sulfide are two components of natural gas. They react incompletely to form carbon disulfide and hydrogen. The reaction for the equation can be written

$$CH_{4(g)} + 2H_2S_{(g)} \implies CS_{2(g)} + 4H_{2(g)}$$

- (a) Write an expression for the equilibrium constant for the reation
- (b) In an experiment it is found that at equilibrium the concentrations of each substance are

CH_4	$5.0 \text{ mol } L^{-1}$
H_2S	$10.0 \text{ mol } \text{L}^{-1}$
CS_2	$2.2 \text{ mol } L^{-1}$
H ₂	$1.5 \text{ mol } L^{-1}$

Calculate the equilibrium constant for this reaction

(c) The graph below shows how the concentration of carbon disulfide changes during the reaction

(Not available)

At time T the pressure in the reaction vessel is doubled. On the graph in the answer book, continue the sketch to show how the concentration of CS_2 will change after time T.

PART C

Attempt ALL questions Each question is worth 5 marks Answer all questions in the Part C Answer Book provided

In questions involving calculations, you are advised to show working, as marks may be awarded for relevant working.

23. Compound A is drawn below

(Not available)

- (a) Give the systematic name for this compound
- (b) Cyclohexane is an isomer of compound A
 - (i) Define the term *isomer*
 - (ii) Draw the structural formula of cyclohexane
- (c) Describe a chemical test you could perform in the school laboratory to distinguish between compound A and cyclohexane. Explain the results observed
- **24.** The pH values of solutions of four different acids, each having a concentration of 0.010 mol L⁻¹, are:

Acid	НСООН	H_2S	HI	NH ₄ C1
рН	2.9	4.5	2.0	5.6

- (a) Which acid is the strongest electrolyte? Why?
- (b) Which acid has the strongest conjugate base? Why?
- (c) Give the names of the conjugate bases of the first two acids in the table
- (d) The 0.01 mol L^{-1} HCOOH solution is diluted to a concentration of 0.001 mol L^{-1} . Calculate the new pH value. Show all workings.

- **25.** During a titration a student titrates $25.0 \text{ mL of } 0.10 \text{ mol } \text{L}^{-1}$ sodium hydroxide with the weak acid, hydrobromous acid, HOBr. 15.0 mL of hydrobromous acid is needed to neutralise the base.
 - (a) Write an equation for the reaction
 - (b) Determine the initial pH of the sodium hydroxide
 - (c) In the space provided in your answer booklet draw a titration curve for this reaction. On your curve clearly label
 - (i) initial pH of the titration
 - (ii) point on the curve where pH is 7
 - (iii) position of the equivalence point
 - (iv) volume of acid needed to neutralise the base
- **26.** The graph below shows the rate curves for ammonia and hydrogen cyanide as a mixture of these two gases attains equilibrium –

- (a) At what time was the equilibrium achieved?
- (b) State the equilibrium concentration for ammonia.
- (c) What is the equilibrium concentration for carbon monoxide if its initial concentration was $1.6 \text{ mol } \text{L}^{-1}$?
- (d) Write the equilibrium expression for this reaction.
- (e) Determine the value for the equilibrium constant.