

2010

HIGHER SCHOOL CERTIFICATE EXAMINATION

Chemistry

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using black or blue pen
- Draw diagrams using pencil
- Board-approved calculators may be used
- A data sheet and a Periodic Table are provided at the back of this paper
- Write your Centre Number and Student Number at the top of pages 9, 11, 13, 15, 17, 19, 21 and 23

Total marks - 100

Section I Pages 2–24

75 marks

This section has two parts, Part A and Part B

Part A - 20 marks

- Attempt Questions 1–20
- Allow about 35 minutes for this part

Part B - 55 marks

- Attempt Questions 21–31
- Allow about 1 hour and 40 minutes for this part

Section II Pages 25–36

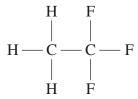
25 marks

- Attempt ONE question from Questions 32–36
- Allow about 45 minutes for this section

Section I 75 marks

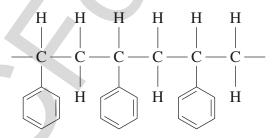
Part A – 20 marks Attempt Questions 1–20 Allow about 35 minutes for this part

Use the multiple-choice answer sheet for Questions 1–20.


1 Water is released during a polymerisation reaction.

Which monomer is likely to have been involved in the reaction?

- (A) Ethene
- (B) Glucose
- (C) Styrene
- (D) Vinyl chloride
- 2 Which of the following is an example of a transuranic element?
 - (A) C-14
 - (B) Co-60
 - (C) U-238
 - (D) Cm-249
- 3 Which substance shows the correct indicator colour?


	Substance	pН	Indicator	Colour
(A)	Stomach acid	2	Methyl orange	Yellow
(B)	Lemon juice	3	Phenolphthalein	Pink
(C)	Soda water	4	Phenolphthalein	Pink
(D)	Seawater	8	Methyl orange	Yellow

4 The diagram shows the structural formula of a gas.

How many isomers does this compound have?

- (A) 1
- (B) 2
- (C) 3
- (D) 4
- 5 An imbalance of which two substances causes the eutrophication of waterways?
 - (A) H⁺ and OH⁻
 - (B) Mg^{2+} and Ca^{2+}
 - (C) Oxygen and ozone
 - (D) Phosphorus and nitrogen
- **6** The diagram shows a section of a polymer.

What is the systematic name of the monomer?

- (A) Polybenzene
- (B) Benzylethene
- (C) Ethylbenzene
- (D) Ethenylbenzene

7 Equal volumes of four 0.1 mol L⁻¹ acids were titrated with the same sodium hydroxide solution.

Which one requires the greatest volume of base to change the colour of the indicator?

- (A) Citric acid
- (B) Acetic acid
- (C) Sulfuric acid
- (D) Hydrochloric acid
- 8 In a research report a student wrote, 'Acids are compounds that contain hydrogen and can dissolve in water to release hydrogen ions into solution.'

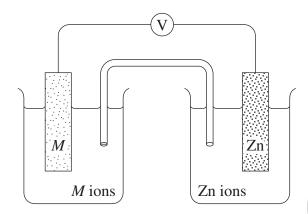
Who originally stated this theory of acids?

- (A) Arrhenius
- (B) Brönsted-Lowry
- (C) Davy
- (D) Lavoisier
- **9** What types of reaction occur in the Haber process during the production of ammonia?
 - (A) Redox and synthesis
 - (B) Hydration and redox
 - (C) Decomposition and oxidation
 - (D) Reduction and decomposition

10 A sample of water from a stream, suspected to be contaminated with metal ions, was analysed.

The results of some tests on the water are recorded in the table.

Test	Result
Add dilute HCl	No change
Add Na ₂ SO ₄ solution	White precipitate formed
Flame test	Pale green colour


What is the most likely contaminant in the water?

- (A) Ba^{2+}
- (B) Ca²⁺
- (C) Cu²⁺
- (D) Fe³⁺
- An organic liquid, when reacted with concentrated sulfuric acid, produces a compound that decolourises bromine water.

What is the formula of the organic liquid?

- (A) C_6H_{12}
- (B) C₆H₁₄
- (C) $C_6H_{11}OH$
- (D) $C_5H_{11}COOH$
- 12 In which of the following reactions does the metal atom show the greatest change in oxidation state?
 - (A) MnO_4^- to Mn^{2+}
 - (B) MnO_2 to $Mn(OH)_3$
 - (C) PbO₂ to PbSO₄
 - (D) VO_2^+ to VO^{2+}

13 The diagram shows a galvanic cell.

Which of the following metals (M) acting as an anode would produce the lowest theoretical potential for the cell?

- (A) Calcium
- (B) Copper
- (C) Iron
- (D) Manganese

14 The table shows information about three carbon compounds.

Compound	Structural formula	Molecular weight	Boiling point
X	H H H 	60	97°C
Y	H—C—C 0—H	60	118°C
Z	H O H C O C O H H	60	?

What is the best estimate for the boiling point of compound Z?

- (A) 31°C
- (B) 101°C
- (C) 114°C
- (D) 156°C

- What mass of ethanol is obtained when 5.68 g of carbon dioxide is produced during fermentation, at 25°C and 100 kPa?
 - (A) 2.95 g
 - (B) 5.95 g
 - (C) 33.6 g
 - (D) 147.2 g
- 16 Which of the following Lewis structures does NOT contain a coordinate covalent bond?
 - (A) \[\begin{pmatrix} \dots & \dots \\ \dots & \dots \\ \dots & \dots \\ \dots & \dots \end{pmatrix}^+ \\ \dots & \dots \\ \dots & \dots \end{pmatrix}^+ \\ \dots & \dots & \dots \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ \dots & \dots \\ \dots & \dots

(B) H:N:H

(C) : O :: C :: Ö

- (D) .Ö.
- 17 A student completed an experiment to determine the amount of energy absorbed by a volume of water.

The following data were recorded.

Mass of beaker	215.6 g
Mass of beaker plus water	336.1 g
Final temperature of water	71.0°C
Energy absorbed	21.2 kJ

What was the initial temperature of the water?

- (A) 15°C
- (B) 25°C
- (C) 29°C
- (D) 42°C

18 Chromate and dichromate ions form an equilibrium according to the following equation.

$$2\text{CrO}_4^{\ 2-}(aq) + 2\text{H}^+(aq) \implies \text{Cr}_2\text{O}_7^{\ 2-}(aq) + \text{H}_2\text{O}(l)$$

Which solution would increase the concentration of the chromate ion (CrO_4^{2-}) when added to the equilibrium mixture?

- (A) Sodium nitrate
- (B) Sodium chloride
- (C) Sodium acetate
- (D) Ammonium chloride
- 19 Sodium azide is used in automobile airbags to provide a source of nitrogen gas for rapid inflation in an accident. The equation shows the production of nitrogen gas from sodium azide.

$$2\text{NaN}_3(s) \rightarrow 2\text{Na}(s) + 3\text{N}_2(g)$$

What mass of sodium azide will produce 40 L of N₂ at 100 kPa and 0°C?

- (A) 70 g
- (B) 76 g
- (C) 114 g
- (D) 172 g
- 20 Solutions containing copper ions were analysed by AAS. A standard solution of 10 ppm copper had an AAS absorbance of 0.400. A second solution of unknown concentration was found to have an absorbance of 0.500.

100 mL of this second solution was reacted with excess sodium carbonate solution. The precipitate was then dried and weighed.

What mass of precipitate was formed?

- (A) 1.25×10^{-3} g
- (B) $2.43 \times 10^{-3} \text{ g}$
- (C) 1.54 g
- (D) 2.43 g

2010 HIGHER SCHOOL CERTIFICATE EXAMINATION				\neg
Chemistry				
•		(Centre N	Number
Section I (continued)				
Part B – 55 marks Attempt Questions 21–31 Allow about 1 hour and 40 minutes for this pa	;	Si	tudent N	Jumber
Answer the questions in the spaces provided. These length of response.	e spaces provide	guidance fo	or the ex	xpected
Show all relevant working in questions involving ca	alculations.			
Question 21 (3 marks) A $0.001 \text{ mol } L^{-1}$ solution of hydrochloric acid a ethanoic acid both have a pH of 3.0. Why do both solutions have the same pH?	and a 0.056 mol	L ⁻¹ soluti	on of	3

2001 - 9 -

Question 22 (6 marks)

A student prepared the compound methyl propanoate in a school laboratory.

(a)	Give a common use for the class of compounds to which methyl propanoate belongs.	1
(b)	In the managetion of this commound a few drams of concentrated sulfamin said	2
(b)	In the preparation of this compound a few drops of concentrated sulfuric acid were added to the starting materials. The mixture was then refluxed for a period of time.	2
	Why was it necessary to reflux the mixture?	
(c)	Name the TWO reactants used in preparing the methyl propanoate and draw their structural formulae.	3

	emistry						
Sect	Centre Numbe Section I – Part B (continued)						
5000							
		Student Number					
Que	estion 23 (3 marks)						
(a)	Write a balanced chemical equation for the complete combustion	of 1-butanol. 1					
(b)	A student measured the heat of combustion of three different fue are shown in the table.	els. The results 2					
	Fuel Heat of combustion (kJ g ⁻¹)						
	A -48 B -38 C -28						
	The published value for the heat of combustion of 1-butanol is 20	676 kJ mol ⁻¹ .					
	Which fuel from the table is likely to be 1-butanol? Justify your	answer.					

2002 - 11 -

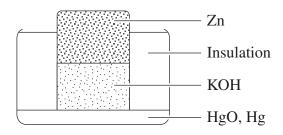
Question 24 (4 marks)

In the margarine industry, alkenes are often hydrogenated to convert unsaturated oils into solid fats that have a greater proportion of saturated molecules.

(a)	Using ethene as an example, write an equation for this reaction and state the type of reaction this represents.	2
(b)	Describe a test that could be used to confirm that all the ethene has been converted.	2

Chemistry									
Section I – Part B (continued)						C	entre	Nu	mber
Section 1 – Part B (continued)									
						Stı	ident	t Nui	mber
Question 25 (5 marks)					4	(
What is the relationship between dissolved oxygen a and why is it important to monitor both in natural wa				al ox	yger	n der	nand	l	5
	•••••	•••••					•••••	•	
	•••••	•••••				•••••	•••••	•	
	•••••		•••••		•••••	•••••	•••••	•	
					•••••	•••••	•••••	•	
				•••••	•••••	•••••	•••••		
			•••••	•••••	•••••	•••••	•••••		
			•••••	•••••	•••••	•••••	• • • • • •		
		•••••	•••••	•••••	•••••	•••••	•••••	•	
	•••••	•••••	•••••	•••••	•••••	•••••	• • • • • •	•	
								-	

2003 - 13 -



Chemistry	ION					
			C	entre	Nur	nber
Section I – Part B (continued)						
			Stu	ident	Nur	nber
Question 26 (4 marks)			(
A gas is produced when 10.0 g of zinc is placed	in 0.50 L of 0.20 mol I	L^{-1} n	itric	acid.	,	4
Calculate the volume of gas produced at 25° chemical equation in your answer.		de a	bala	nced	l	
			•••••	•••••		
		•••••	•••••	• • • • • • •		
					•	
				• • • • • • •		
			•••••	•••••		

2004 - 15 -

Question 27 (2 marks)

The diagram shows a particular cell with relevant half equations.

2

$$\operatorname{Zn}(s) + 2\operatorname{OH}^-(aq) \rightarrow \operatorname{ZnO}(s) + \operatorname{H}_2\operatorname{O}(l) + 2\operatorname{e}^-$$

 $\operatorname{HgO}(s) + \operatorname{H}_2\operatorname{O}(l) + 2\operatorname{e}^- \rightarrow \operatorname{Hg}(l) + 2\operatorname{OH}^-(aq)$

Identify the anode, cathode and electrolyte for	this cell.

2010 HIGHER SCHOOL CERTIFICATE EXAMINATION Chemistry	Control Novelless
Section I – Part B (continued)	Centre Number
	Student Number
Question 28 (8 marks)	
The flowchart shown outlines the sequence of sequence of sequence of an unknown hydrochloric acid solution	
Preparation of A 500 mL 0.100 mol L ⁻¹ sodium carbonate standard solution	
25.0 mL used Titration	Unknown hydrochloric acid
Average titration volume of acid 21.4 m	solution
Concentration of hydrochloric acid solution	
Describe steps A , B and C including correct technique calculations. Determine the concentration of the hydro	

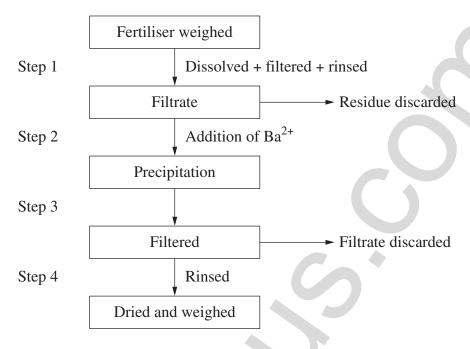
Question 28 continues on page 18

- 17 **-**2005

Question 28 (continued)

End of Question 28

2010 HIGHER SCHOOL CERTIFICATE EXAMINATION Chemistry							
Section I – Part B (continued)				C	entre	Nu	mber
Section 1 – 1 art B (continued)							
			•	Stı	ident	Nui	nber


Question 29 (6 marks)

Please turn over

2006 - 19 -

Question 29 (6 marks)

The flowchart shown outlines the process used to determine the amount of sulfate present in a sample of lawn fertiliser.

(a)	What assumptions were made and how do these affect the validity of this process?	3
(b)	It was found that 4.25 g had a sulfate content of 35%.	3
(0)	To was round and the grade a solution of the fet	
(0)	What is the mass of the dried precipitate at Step 4? Include a chemical equation in your answer.	3
(0)	What is the mass of the dried precipitate at Step 4? Include a chemical equation	3
	What is the mass of the dried precipitate at Step 4? Include a chemical equation	3
	What is the mass of the dried precipitate at Step 4? Include a chemical equation	3

Chemistry										
Section I – Part B (continued)							C	entre	e Nu	nber
Seci	non I – Fart B (continued)									
							Stı	ıden	t Nu	nber
Que	estion 30 (8 marks)									
(a)	Compare the process of polymerisation of relevant chemical equations in your answer.	ethy	lene	and	gluc	cose.	Ind	clude	2	3
								•••••	•	
		• • • • • • • • • • • • • • • • • • • •	••••••				•••••	•••••	•	
					\	•••••	•••••	•••••	•	
					•••••	•••••	•••••	•••••	•	
						•••••	•••••	•••••		

Question 30 continues on page 22

2007 - 21 -

Question 30 (continued)

Explain the relationship between the structures and properties of THREE different polymers from ethylene and glucose, and their uses.	5
	different polymers from ethylene and glucose, and their uses.

End of Question 30

	HIGHE emis		OL CERTIF	ICATE EX	AMINATI	ION									
Section I – Part B (continued)							Ce	entre	Nuı	nber					
Seci	ion i –	1 alt D	(continued	,											
						L						Stu	dent	Nui	nber
Que	stion 31	1 (6 mar	·ks)								4				
(a)			lected a 25 ected are sh		-	water	fron	n a le	ocal	dam	for	anal	ysis.		
			Mass of fi	lter paper	r				0.2	23 g	1				
			Mass of fi	lter paper	r and sol	lid			0.6	47 g					
			Mass of e	vaporatin	g basin				43.	53 g					
			Mass of b	asin and	solid ren	nainin	g		44.	67 g					
	(i)		ater was file			al disso	olved	d sol	ids ir		dam		nple.		2
	(ii)	chloric Descri	uspected the le ions. be a chemical the present the p	cal test the	at could	be car	ried s. In	out (on the	e wat	er s	samp	le to		2
			,				•••••				•••••		•••••		

Question 31 continues on page 24

2008 - 23 -

Question 31 (continued)

(b)	Name an ion other than chloride that commonly pollutes waterways, and identify its source and the effect of its presence on water quality.	2

End of Question 31

2010 HIGHER SCHOOL CERTIFICATE EXAMINATION

Chemistry

Section II

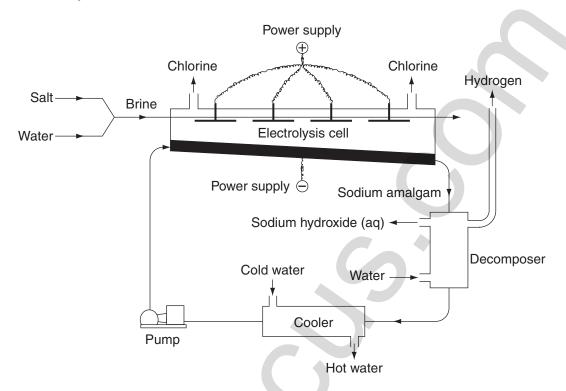
25 marks Attempt ONE question from Questions 32–36 Allow about 45 minutes for this section

Answer parts (a)–(c) of the question in a writing booklet. Answer parts (d)–(e) of the question in a SEPARATE writing booklet.

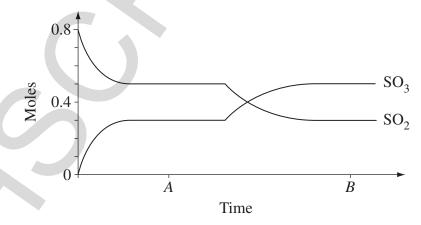
Show all relevant working in questions involving calculations.

		Pages
Question 32	Industrial Chemistry	26–27
Question 33	Shipwrecks, Corrosion and Conservation	28–29
Question 34	The Biochemistry of Movement	30–31
Question 35	The Chemistry of Art	32–33
Question 36	Forensic Chemistry	34–36

Question 32 — Industrial Chemistry (25 marks)


Answer parts (a)–(c) in a writing booklet.

(a) Identify the type of cell shown and outline the process used in the extraction of sodium hydroxide.


3

5

3

- (b) Compare the electrolysis of molten sodium chloride and aqueous sodium chloride. Write the relevant half equations and overall reaction for each process.
- (c) At room temperature 0.80 moles of SO_2 and 0.40 moles of O_2 were introduced into a sealed 10 L vessel and allowed to come to equilibrium.

- (i) Write the equilibrium constant expression and calculate the value for the equilibrium constant at time A.
- (ii) Explain why a new equilibrium position was established at time B. 2

Question 32 continues on page 27

Question 32 (continued)

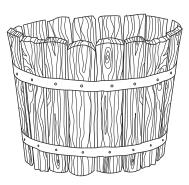
Answer parts (d)–(e) in a SEPARATE writing booklet.

(d) The equation represents a reaction that can be performed in a school laboratory.

Oil + 3 A
$$\rightarrow$$
 3KOC (CH₂)₁₄ CH₃ + Glycerol

- (i) Identify both this type of reaction and the reactant A.
- (ii) Describe how this type of reaction could be carried out in a school laboratory including specific safety precautions for this process.

2


(e) Assess both the importance and resulting environmental impacts of using limestone in the Solvay Process.

End of Question 32

Question 33 — Shipwrecks, Corrosion and Conservation (25 marks)

Answer parts (a)–(c) in a writing booklet.

(a) The following artefact was retrieved from a ship that sank 150 years ago off the coast of New South Wales.

Outline the effect that the marine environment would have had on the artefact.

- (b) (i) Use a fully labelled diagram to show the electrolysis of an aqueous solution of potassium chloride. Write the relevant half equations and the overall reaction for the cell.
 - (ii) How would the cathode be identified?

1

(c) The following table shows the composition of four types of steel. 5

Steel	Composition
1	99.8% Fe, 0.2% C
2	98.5% Fe, 1.5% C
3	94% Fe, 4% C, 1% Mn, 1% Si
4	75% Fe, 15% Cr, 10% Ni

Explain how the composition of each type of steel determines its properties and uses.

Question 33 continues on page 29

Question 33 (continued)

Answer parts (d)–(e) in a SEPARATE writing booklet.

(d) (i) An investigation into environmental factors that affect the rate of corrosion of iron can be performed in a school laboratory.

4

Describe how you could perform this investigation in relation to THREE environmental factors.

(ii) Explain how the effect of ONE of the factors could be reduced in a marine environment.

1

7

(e) Evaluate the suitability of techniques used for restoring and conserving wooden and copper artefacts that have been immersed in salt water for at least 100 years.

End of Question 33

Question 34 — The Biochemistry of Movement (25 marks)

Answer parts (a)–(c) in a writing booklet.

(a) Identify this molecule and outline its importance in cellular metabolism.

3

(b) (i) If the oxidation of glucose in the body occurred as rapidly as when glucose is combusted in air, the sudden release of this large amount of energy could not be utilised by cells.

How do cells overcome this problem?

- (ii) Explain the change in cellular pH during anaerobic respiration. Include a balanced chemical equation in your answer.
- (c) Explain in terms of chemical bonding how the secondary and tertiary structures of a protein depend on the amino acids in its primary structure. In your answer, make specific reference to the structures shown.

Question 34 continues on page 31

Question 34 (continued)

Answer parts (d)–(e) in a SEPARATE writing booklet.

- (d) Construct a flowchart that summarises the steps in aerobic respiration and account for the total energy output.
- (e) Analyse how an understanding of the structure and function of skeletal muscle cells has influenced training programs for athletes.

End of Question 34

Question 35 — The Chemistry of Art (25 marks)

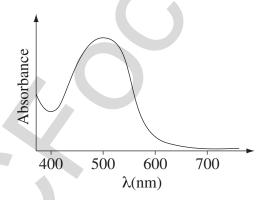
Answer parts (a)–(c) in a writing booklet.

(a) Identify the element in period 3 of the periodic table that has the highest electronegativity and justify your choice.

3

(b) (i) What type of ligand is represented by the oxalate ion shown?

1


(ii) The oxalate ion forms complex ions with both Cu²⁺ and Cu⁺.

4

State whether each of these complex ions is coloured or not and justify your answer.

(c) (i) The absorbance spectrum of a commercial pigment is shown.

2

Draw the resulting reflectance spectrum for this pigment and predict its colour.

(ii) Outline the use of infra-red radiation in both the analysis and identification of pigments.

3

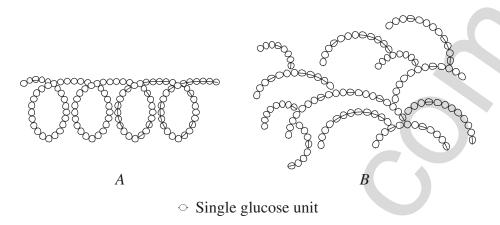
Question 35 continues on page 33

Question 35 (continued)

Answer parts (d)–(e) in a SEPARATE writing booklet.

(d) Experimental evidence from emission line spectra of gaseous atoms has highlighted both the merits and the limitations of Bohr's atomic model.

Discuss Bohr's atomic model with reference to this evidence.


(e) Evaluate the potential health risks associated with the use of a range of cosmetics by ancient cultures.

End of Question 35

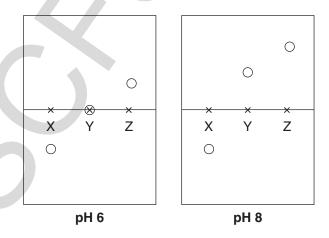
Question 36 — Forensic Chemistry (25 marks)

Answer parts (a)–(c) in a writing booklet.

(a) The diagrams show the arrangement of glucose units in two polysaccharides.

3

Identify A and B and outline their differences in structure and origin.

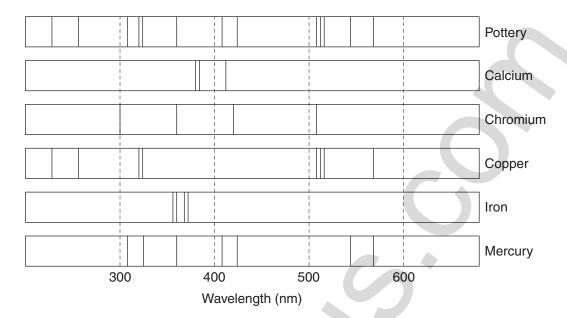

Question 36 continues on page 35

Question 36 (continued)

(b) The structures of three amino acids at pH 6 and pH 8 are shown.

	Glutamic acid	Lysine	Valine
pH 6	$O = C - O^{-}$ $H - C - H$ $H - C - H$ $H - C - H$ $H - C - C$ O^{-} O^{-}	H H H H H H H H H H H H H H H H H H H	H H H H H H H H H H H H H H H H H H H
рН 8	$O = C - O^{-}$ $H - C - H$ $H - C - H$ $H - C - C$ O^{-} O^{-}	H H H H H H H H H H H H H H H H H H H	H H C H O O O O O O O O O O O O O O O O

Samples of each amino acid underwent electrophoresis at pH 6 and pH 8. The results are shown below.


- (i) Outline the process of electrophoresis used in identifying amino acids.
- (ii) Identify the amino acids **X**, **Y** and **Z** and justify your answer.

2

Question 36 continues on page 36

Question 36 (continued)

(c) The following emission spectra were used to identify the manufacturer of a piece of pottery.

Manufacturer	Metal atoms in pottery
A	copper, chromium
В	copper, mercury
C	calcium, chromium

- (i) Which manufacturer made the pottery A, B or C?
- (ii) Explain the production and use of emission spectra in identifying the manufacturer of this pottery.

1

4

2

3

Answer parts (d)–(e) in a SEPARATE writing booklet.

- (d) A forensic chemist analyses soil from a pair of shoes worn by a person suspected of committing a crime.
 - (i) Identify FOUR properties of soil a forensic chemist would investigate.
 - (ii) Describe both an organic and an inorganic test that could be performed on the soil that could match it to soil at the crime scene.
- (e) Describe the techniques used to analyse DNA and the applications of these techniques in forensic analysis.

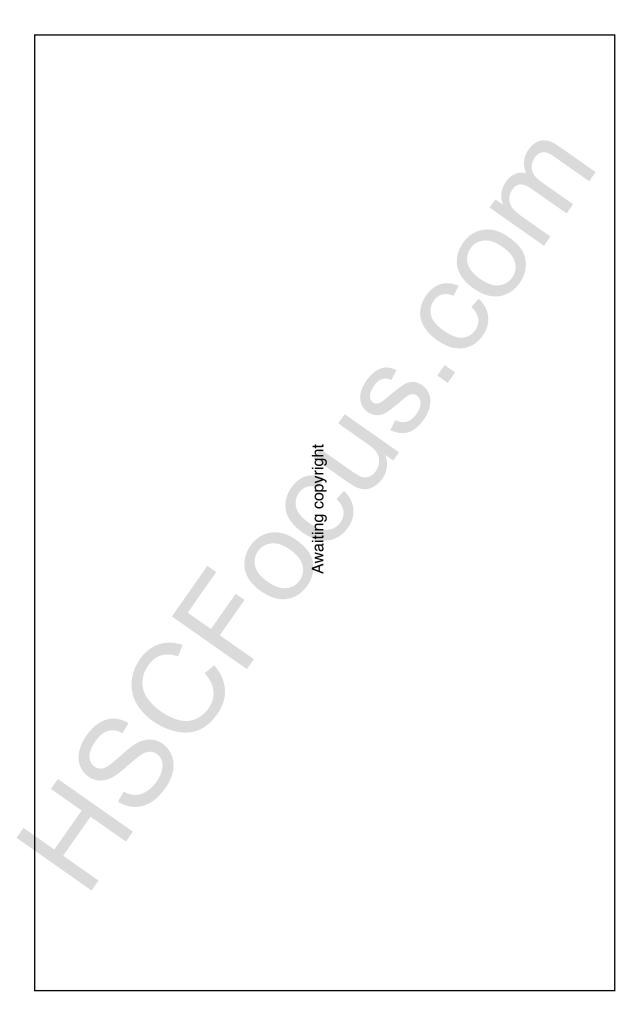
End of paper

2010 HIGHER SCHOOL CERTIFICATE EXAMINATION

Chemistry

DATA SHEET

Avogadro constant, N_A		$1.6.022 \times 10^{23} \text{ mol}^{-1}$
Volume of 1 mole ideal gas: at	100 kPa and	
	at 0°C (273.15 K)	. 22.71 L
	at 25°C (298.15 K)	. 24.79 L
Ionisation constant for water at	t 25°C (298.15 K), K _w	1.0×10^{-14}
Specific heat capacity of water	·	$4.18 \times 10^3 \mathrm{J kg^{-1} K^{-1}}$


Some useful formulae

$$pH = -\log_{10}[H^+] \qquad \Delta H = -mC\Delta T$$

Some standard potentials

Some standard potentials			
$K^+ + e^-$	\rightleftharpoons	K(s)	-2.94 V
$Ba^{2+} + 2e^{-}$	\rightleftharpoons	Ba(s)	–2.91 V
$Ca^{2+} + 2e^{-}$	\rightleftharpoons	Ca(s)	-2.87 V
$Na^+ + e^-$	\rightleftharpoons	Na(s)	–2.71 V
$Mg^{2+} + 2e^{-}$	\rightleftharpoons	Mg(s)	-2.36 V
$Al^{3+} + 3e^{-}$	\rightleftharpoons	Al(s)	-1.68 V
$Mn^{2+} + 2e^-$	\rightleftharpoons	Mn(s)	-1.18 V
$H_2O + e^-$	\rightleftharpoons	$\frac{1}{2}\mathrm{H}_2(g) + \mathrm{OH}^-$	-0.83 V
$Zn^{2+} + 2e^{-}$	=	Zn(s)	-0.76 V
$Fe^{2+} + 2e^{-}$	=	Fe(s)	-0.44 V
$Ni^{2+} + 2e^-$	\rightleftharpoons	Ni(s)	-0.24 V
$Sn^{2+} + 2e^{-}$	\rightleftharpoons	Sn(s)	-0.14 V
$Pb^{2+} + 2e^{-}$	\rightleftharpoons	Pb(s)	-0.13 V
$H^{+} + e^{-}$	\rightleftharpoons	$\frac{1}{2}$ H ₂ (g)	0.00 V
$SO_4^{2-} + 4H^+ + 2e^-$	\rightleftharpoons	$SO_2(aq) + 2H_2O$	0.16 V
$Cu^{2+} + 2e^{-}$	\rightleftharpoons	Cu(s)	0.34 V
$\frac{1}{2}$ O ₂ (g) + H ₂ O + 2e ⁻	\rightleftharpoons	2OH-	0.40 V
$Cu^+ + e^-$	\rightleftharpoons	Cu(s)	0.52 V
$\frac{1}{2}I_2(s) + e^-$	\rightleftharpoons	I^-	0.54 V
$\frac{1}{2}I_2(aq) + e^-$	\rightleftharpoons	I ⁻	0.62 V
$Fe^{3+} + e^{-}$	\rightleftharpoons	Fe ²⁺	0.77 V
$Ag^+ + e^-$	\rightleftharpoons	Ag(s)	0.80 V
$\frac{1}{2}\mathrm{Br}_2(l) + \mathrm{e}^-$	\rightleftharpoons	Br ⁻	1.08 V
$\frac{1}{2}\mathrm{Br}_2(aq) + \mathrm{e}^-$	\rightleftharpoons	Br ⁻	1.10 V
$\frac{1}{2}$ O ₂ (g) + 2H ⁺ + 2e ⁻	\rightleftharpoons	H_2O	1.23 V
$\frac{1}{2}\text{Cl}_2(g) + e^-$	\rightleftharpoons	Cl ⁻	1.36 V
$\frac{1}{2}$ Cr ₂ O ₇ ²⁻ + 7H ⁺ + 3e ⁻	\rightleftharpoons	$Cr^{3+} + \frac{7}{2}H_2O$	1.36 V
$\frac{1}{2}\text{Cl}_2(aq) + e^-$	\rightleftharpoons	Cl ⁻	1.40 V
$MnO_4^- + 8H^+ + 5e^-$	\rightleftharpoons	$Mn^{2+} + 4H_2O$	1.51 V
$\frac{1}{2}$ F ₂ (g) + e ⁻	\rightleftharpoons	F-	2.89 V

Aylward and Findlay, *SI Chemical Data* (5th Edition) is the principal source of data for this examination paper. Some data may have been modified for examination purposes.

